Computer-aided

fighter pilots

How an interdisciplinary team overcame technical and organizational hurdles to develop
an expert system that tailors its real-time responses to a pilot’s flying style

SYSTEMS DESIGN

In late 1984, a disagreement emerged among sub- E
contractors and members of the Lockheed Corp.
team that was preparing to bid on a U.S. Air Force
and Defense Advanced Research Projects Agency
(Darpa) contract for an artificial-intelligence (Al)
project to aid fighter pilots in flight. Assembled
specialists from the company’s Marietta, Ga.,
facility—from electrical engineers to psychologists
to fighter pilots—were split on which design ap-
proach to take. Should the system, called the Pilot’s B
Associate (PA), be a conventional expert system, recommend-
ing a course of action from a fixed knowledge base about tacti-
cal air combat? Or should it take the novel step of tailoring its
expert response to the pilot’s particular style of flying the aircraft?

Rather than deciding by fiat, a Lockheed manager divided the
group into opposing sides. We at Search Technology Inc., Nor-
cross, Ga., led what was called the blue-sky team, which advo-
cated a system specifically tailored to a pilot’s needs. Our com-
petition, calling for a more conventional approach, was the
down-to-earth team, which proposed adding expert-system tech-
niques to an existing avionics architecture for communicating
among on-board computers as well as sensors and actuators.

In our blue-sky team presentation to Lockheed, the first slide
that represented the system we planned to develop showed a
knight on horseback alongside the R2D2 robot of Star Wars fame,
symbolizing a pilot accompanied by an automated helper. Sub-
sequent frames showed how the system would use what we called
an intent interpretation software module to gather data about
stick movements, radar, and equipment sensors to infer in real
time the intent of the pilot’s actions. This information could then
be employed to compare intent with what was actually happen-
ing in and around the plane.

Our approach, interpreting pilot activity as a basis for apply-
ing expert-system recommendations, was a significant factor in
Darpa’s and the Air Force’s awarding of the Al project to the
Lockheed team. In addition to our group, another team of
McDonnell Douglas Corp., St. Louis, Mo., and Texas Instruments
Inc., Dallas, was awarded a contract to develop software proto-
types for a competing version of the PA.

New challenges

Moving from a series of presentation transparencies to a sys-
tem that worked in real time, however, encompassed far worse
design challenges. One of the primary obstacles—and the rea-
son for the intent interpretation module we proposed—was the
need to adapt expert-system technology to perhaps the most crit-
ical of any real-time environment, a fighter cockpit. A system
expected to give the pilot immediate information about threats
and targets was markedly different from, say, a computer-based
system that “interviewed” a physician question by question to
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elicit a disease diagnosis. Not only does it need to
communicate rapidly with the pilot, but it must sup-
press unnecessary details so that the pilot can focus
on what is truly important.

The scope of the project also made it stand out.
Many expert systems succeed by narrowing their
knowledge base to a carefully circumscribed area of
expertise, gained through lengthy interviewing of in-
dividuals prominent in a field. For instance, an elec-
tric utility might develop an expert system to help
replace a retiring staffer who has mastered the intricacies of
repairing hydroelectric dams.

But the PA, besides the pilot’s inputs, required in its knowl-
edge bases expertise from human-factors specialists to decide how
the information should be displayed, psychologists to establish
benchmarks for pilot performance in combat, and engineers to
define the relevant operational characteristics that need to be
monitored by the expert system.

The project’s breadth can be seen in its multiple software mod-
ules, all of which had to work together: a tactics planner, craft-
ed by ISX Corp. (formerly Teknowledge Federal Systems), Thou-
sand Oaks, Calif., that supplied recommendations on tactical
maneuvers such as attacking or evading; a mission planner created
by Lockheed that recommended a flight path; General Electric
Co.’s system status module that monitored engines for disabled
components, overheating or vibration, and engine fires; a situa-
tion assessor, the work of various project contractors, that evalu-
ated targets and threats; and a mission manager from Lockheed
containing a blackboard, or memory space, that coordinated
communication among the various software modules.

Search Technology, which had been working with Lockheed
a year prior to the contract award, was retained by Lockheed as
the subcontractor for yet another module, the pilot-vehicle in-
terface (pvi) that was to perform intent interpretation and deter-
mine how much information to display to the pilot at a given mo-
ment [Fig. 1].

Defining terms

IF-THEN rule: in the context of an expert system, a statement
declaring that a particular condition is to be followed by a par-
ticular action; it is also called a production rule.

Inference engine: the part of the expert system that selects
and executes rules from the knowledge base.

Knowledge base: the part of an expert system that contains
the IF-THEN rules that represent a human expert’s understand-
ing of a domain, the problem area covered by an expert sys-
tem; it also includes knowledge about events, objects, and
situations.

Plan and goal graph: a hierarchical graph of pians and goals.
The lowest level consists of nodes in which an action—a type
of plan—a pilot takes is used to arrive at goals by executing
an IF-THEN rule that moves up the graph’s plan and goal nodes
as it infers what the pilot is trying to do.
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In operation, if a pilot deviates from
the tactical attack plan—turning the
radar off and moving away from a tar-
get or threat, for instance—the pvi brings
up displays with relevant defensive sys-
tems, like chaff or electronic counter-
measures. Conversely, if the pilot focuses
all attention on a combat maneuver, the
pvi is to sense this and refrain from
bothering him with malfunction warn-
ings that could be delayed until later.
Once the pvi knows what the pilot wants
to do, it can detect flying errors, deter-
mine how serious they are, report them
to the pilot, and possibly correct them if
the pilot has authorized it to do so. The
pviis also the interface between the pilot
and other PA system modules, such as
the tactics and mission planner.

The need to manage so much informa-
tion simultaneously stems from the
growing density and efficacy of both air-
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borne and land-based threats and the in-
creasing complexity of fighter counter-
measures to respond to those threats. In
the F-18, there are over 40 radar modes,
more than most pilots know how to use.

Technically, the pvi employs a combi-
nation of Al and algorithmic processes.
It consumes more code than any other
PA system module, combining 800 rules
with an intricate tree-like structure that
is used to infer a larger intent from a sim-
ple action: does moving the stick, for ex-
ample, mean that the pilot wants to
engage or evade a threat?

A fast pace

As with any other expert system, the early part of our work
was directed toward establishing a knowledge base: data from
experts that could then be processed by the system’s inference en-
gines. The best expert sources were those with cross-disciplinary
specialties. For instance, one team member, a cognitive psychol-
ogist who helped work out specifications for a knowledge base
of in-flight performance, was hired in part because he had ex-
perience as a nuclear engineer.

Psychologists generally prefer to evaluate hypotheses by con-
ducting experiments, an approach that would have been out of
step with the fast pace of this program. Drawing on his experience
as an engineer, the psychologist on our team understood the need
to proceed with a design despite gaps in performance data.

Pilots, of course, were a key part of this most labor-intensive
portion of the project. To find out whether fighter pilots would
really use the functions we were planning to design into the pvi,
we interviewed some.

One question we explored was whether the pilots would be will-
ing to have the PA take over for them. Nine of the 10 interviewed
said that the notion of the plane routinely taking control was
anathema to them. But when asked whether they would mind
the plane’s taking over if they were unconscious and in a tailspin,
all except one were amenable. That holdout said that even the
possibility of being rescued from certain death was not enough
to yield the control that he believed should remain the pilot’s
prerogative. Reacting to a more middling scenario, most said that
if an engine stalled while engaged in combat, having the pvi restart
the engine would be welcome.

The pilot’s intent
With these raw inputs, we then had to tackle the software de-
sign so the system could make expert reccommendations without
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[1] The pilot-vehicle interface (pvi) consists of expert-system software modules that inter-
pret a pilot’s actions, such as flipping a switch, and relays them via an input decoder to
a plan-goal graph (not shown) in the intent interpretation module. The plan-goal graph
is used to infer the pilot’s intent, information which is passed to the interface manager
or to three other modules: the error monitor, which checks for flying mistakes; the resource
model, which estimates the pilot’s mental workload; and the performance model, which
predicts how long a pilot will take to complete a task. Adaptive aiding determines wheth-
er the pilot needs automated assistance from inputs from the error monitor, the resource
model, or the performance model. The interface manager decides what display informa-
tion the pilot needs before going to the display generator outside the pvi; a blackboard
lets modules share information.

stopping to quiz pilots during air-to-air combat. Having a
knowledge-based system interpret a pilot’s actions was achieved
by defining the natural language the pilot and aircraft used to
communicate with each other. The sentences and paragraphs of
that language were the numerous switch activations, stick move-
ments, and engine and radar status readings that made up the
operation of the aircraft; these were presented to the pvi through
a software interface module called the input decoder.

It was our job—and perhaps one of the biggest design
hurdles—to take those raw inputs and create a software struc-
ture that could infer from them an understanding of the pilot’s
intent. The key to the system architecture was the plan-goal graph
(pgg), which describes the elements used to link a pilot’s actions,
or plans, with a particular mission goal [Fig. 2].

Influencing the design of the pgg was the work of Roger
Schank, a professor at Northwestern University, Evanston, Ill.
Schank programmed software with a plan-to-goal structure that
drew conclusions about activities in a restaurant. How satisfied
a restaurant-goer was with a meal or service was inferred from
IFTHEN rules that were applied to the details of a written descrip-
tion of the meal.

Search Technology’s pgg consists of 300 nodes, each represent-
ing a plan or goal. An action—a change in the state of an air-
craft system that may result from, say, a pilot’s flipping of a
switch—is a type of plan that is represented as the lowest node
of the pgg. The goal of the action—one node up the pgg—is then
inferred from the plan. Plans and goals alternate in a chain up
the graph. Links among graph nodes are established using some
of the 800 IFTHEN rules from the pvi’s knowledge base. The soft-
ware that activates these rules is an inference engine called Oper-
ator Plan Analysis Logic (Opal), which selects IFTHEN rules as-
sociated with a particular pgg node until it finds one that works.
In this way, it searches up the graph from plan to goal.

One simplified example illustrates how the pgg figured out the
pilot’s intent to land the plane: IF the pilot takes the action of
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[2] Determining a pilot’s intent is done —
by a plan-goal graph, which links plan |
and goal using rules from the pilot- {
vehicle interface’s inference engine, 'c"::";ls |
Operator Plan Analysis Logic (Opal). An  switches |
action, a type of plan, is represented by (‘f;g:sinpu |
the pilot turning on the UHF radio to @ from other |
particular frequency in the triangles at  modules |
Sensor data
left. Opal then executes IFTHEN rules |
until it finds one that infers a goal: “have |
communication” with the Atlanta ap- '
proach controller, indicated by the fre- :
quency 385.5 megahertz. The goal, in |
turn, leads by way of another IFTHEN |
rule to a higher node, a plan that infers |
from the agent (here, the Atlanta ap- |
proach controller) that the pilot wants to |
land in the Atlanta area. Some frequen- |
cies were chosen only for illustration and |
are not the real ones used. }
|
|

turning on the fighter’s UHF radio at a frequency of 385.5 mega-
hertz, THEN Opal infers the “have communication” goal. That
frequency corresponds to the goal of establishing contact with
the Atlanta approach controller. Then, proceeding up the graph
with another rule: IF the goal is to contact Atlanta and IF the
pilot is near the city, THEN the pilot wants to land.

The plans and goals may consist of a script—for example, a
set of formal procedures to be taken for an engine fire emergen-
cy: pull fire handle, dump fuel. Or they may be loosely ordered
sets of alternatives, particularly in combat, because of the im-
possibility of proceduralizing everything that may occur in fly-
ing a jet fighter.

The pvi incorporates a feedback mechanism designed to cope
with the volatile environment of the fighter cockpit. This Al con-
cept is called successive disambiguation of uncertainty: if the pgg
has difficulty determining a pilot’s intentions, then Opal will reach
a tentative conclusion by making the closest match between plans
and goals. But, if the match is not entirely consistent, the sys-
tem will correct its interpretation after observing subsequent plans
that could be interpreted as having a differing goal. A pilot may
turn off the radar and the pvi may conclude that the goal is to
launch a “stealthy” attack on a target. However, if a moment later,
the pilot moves the stick to turn away from the target, evasion
would be the revised goal.

A reconciliation

At times it was necessary to reconcile differing design needs.
After noticing that we at Search Technology and the tactics plan-
ner design team were each developing our own plan definition,
we decided to work toward a common pgg. One major difficul-
ty was reconciling the fact that ISX needed to keep many pgg
nodes in one place—those for radio communications, for
example—while we wanted to spread them out. For tactics plan-
ning, having nodes for different radio frequencies together made
it easier for the software to control the radios. By contrast, we
needed the frequencies spread out throughout the pgg because
the reason for using a radio might be anything from a combat
maneuver to reporting an engine malfunction. The final pgg
blended the two approaches.

Once the intent-interpretation software had done its work, an-
other module—the error monitor—searched for anomalies in the
pilot’s actions. If some action could not be explained, the error
monitor searched for a reason. For instance, if the pilot sudden-
ly tuned the radio to the Atlanta approach frequency when the
plane was, in fact, flying near Miami, the error monitor would
search its knowledge base for similar frequencies, an effort that
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might succeed in locating and flagging a mis-entered digit.

The error monitor was built on five years’ earlier work that
we did for the National Aeronautics and Space Administration’s
(NASA’s) Ames Research Center, Moffett Field, Calif., in which
we studied pilot performance for civilian aircraft. From this, we
were able to identify some of the subtleties involved in causing
a pilot to make a mistake in flying an aircraft. One thing we learn-
ed was that a pilot faced with an aircraft malfunction such as
an engine failure might unconsciously revert to a procedure for
landing that presumed all engines were operating. This occurred
particularly when the two procedures were very similar. Cogni-
tive psychologists describe a pilot who makes this error as being
“captured” by the routine way of doing things. The error moni-
tor was programmed to look for and flag such deviations.

When an error is located during flight, it is passed to yet an-
other module, adaptive aiding, with a recommendation for cor-
rective action. Adaptive aiding must then decide what informa-
tion to pass along to the pilot. It might not inform him of a
possible error, however, if he is engaged in a critical but unrelat-
ed activity such as air-to-air combat. In this case, adaptive aid-
ing would automatically correct the error, but only if the pilot
had authorized such an action before the flight.

Two other pvi modules also communicate with adaptive aid-
ing: the resource model, which tries to predict whether a pilot
could devote attention—vision, hearing, and hand movement—to
a particular task, and a performance model, which predicts how
long it would take to complete a task.

Formatting information for display—where hydraulic-system
status, an error message, or other information appears on the
screen—is the job of the interface manager. The information it-
self might come from the aircraft or any of the PA modules.

Both Darpa and the Air Force specifically directed us not to
turn the PA into a display-design program. Although the inter-
face manager only passes information to the screen-driver soft-
ware developed by Lockheed, called the display generator, Search
Technology was asked to take part in selecting which display tech-
nologies to use. We were told to concentrate on utilizing existing
systems, such as touch screens, color cathode-ray tubes, and voice
input/output systems.

Ways to communicate

A major difficulty in developing the PA was finding effective
ways to communicate—both among human designers and among
the software modules themselves, Communication was problem-
atical because it occurred at a more abstract level than the avionics
of a conventional aircraft. For example, instrumentation on most
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aircraft senses airspeed. The dependence of speed upon altitude,
which defines the meaning of airspeed, is something described
in elementary acrodynamics textbooks.

But there was no textbook to which we could turn to obtain
a quantitative definition of how dangerous a threat was. While
an enemy might be tagged with a threat value of from 1 to 100,
the threat’s myriad dependent variables affect the extent of the
threat: whether the enemy is aware of the pilot’s aircraft is just
one dependent variable that governs threat severity.

Because of the complexity, we employed a variety of program-
ming and design concepts, some borrowed from areas outside
the Al field, including operations research. Although the soft-
ware was programmed in Lisp, we elected not to use standard
expert-system shells, such as Knowledge Engineering Environ-
ment or Acquisition of Strategic Knowledge, because their soft-
ware overhead would be unacceptable in a real-time avionics en-
vironment.

The actual designing and programming of the pvi on a Sym-
bolic 3640 workstation and three IBM PC/ATS proved an exer-
cise in tedium. One team member commented that the first 5-10
percent of knowledge engineering is enjoyable because demon-
stration software can be brought up quickly showing how the sys-
tem might work in a limited scenario. The remaining work proves
arduous because of the many interactions that can occur in such
a tightly structured system.

Once we had collected, compiled, and represented the infor-
mation in the knowledge base for our first prototype, we had to
start all over because our understanding of the problems involved
had broadened. Redesigning the pgg or adding a new plan also
required adding supporting knowledge to the other modules. In-
cluding a target-recognition device that identified an enemy fight-
er from its exhaust emissions required painstaking manual
changes to many pgg nodes.

We still desperately need tools to assist in the creating of knowl-
edge bases. This might be a software utility that would simulate
the aircraft’s altitude, sensors, and weapons, and then execute new
design rules to show what impact they have on a particular plan
in the pgg. It would flag a knowledge-base error if the program
incorrectly interpreted a pilot’s action and would allow the sys-
tem’s knowledge to be edited.

Search Technology did develop a simple tool that allows pgg
and display debugging, testing, and editing. Without that tool,
we would have had to modify elements of the knowledge base
with a text editor and then use Lisp program stepping and trac-
ing facilities to check program execution. The Lisp facilities are
too slow to be practical in debugging large-scale knowledge bases.

Rapid prototyping—a technique rarely used on military
projects—allowed us to squeeze a complete cycle of requirements
specification, design, and coding into a four-month period. One
technique was to look ahead to the most important design goals
for each module for the next prototyping cycle.

We also speeded up the software documentation process. If
we had been required to produce fully documented, deliverable
software for each prototype, we would probably still be on the
second or third round, rather than the ninth prototype. Fortunate-
ly, the Government’s streamlined approach dropped the require-
ment of extensively documenting the software before it was writ-
ten. Instead, details about what happened during the development
process were delivered after the completion of each cycle.

Foraging for data

Hanging over the entire project was the fact that through all
the prototypes we knew relatively little about the mid-1990s air-
craft for which we were designing. Lockheed, one of the two prime
contractors for the Advanced Tactical Fighter (ATF), the model
for the aircraft of the new decade, was able to release only scant
details of the classified, competition-sensitive system it was
designing. Even so, much time was spent in scrounging for in-
formation about technologies likely to be used on the ATF—
electronically steered radar, for one. It would have been far sim-
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pler to take technical data from the F-15 or another fielded air-
craft in order to design the software in such a way that it could
be adapted to the expected technological advances.

Because of this gap in our knowledge, we had to make assump-
tions about the aircraft. Future sensors are likely to be better, but
by how much? If the fighter’s sensors are assumed to be too good,
the simulator could account for location, velocities, and com-
position of enemy forces, giving the pilot an unrealistically com-
prehensive overview of his tactical situation.

The new electronically steerable radar antennas may be direc-
tionally agile, eliminating the need for continuous scanning or
steering. The pgg has to reflect the new search modes, even though
current pilots have no operational experience with them. The only
certainty we had to go on was that in every situation, each fight-
er had to be able to cope with the chance of being outnumbered.

The early phases of our work emphasized development over
testing. But we have not had enough time to learn how the sys-
tem behaves as an ensemble. So we have yet to fully explore the
limits and accuracy of Opal’s ability to predict a pilot’s inten-
tions. To test these types of scenarios and study how a complex
expert system might produce erroneous conclusions, Search Tech-
nology is under contract with NASA’s Langley Research Center
in Hampton, Va. We are trying to determine whether the system
could produce a false conclusion because of data it lacks in its
knowledge base. One consequence: the pvi might attempt to sub-
stitute an inappropriate screen display.

Although the PA started as a high-risk technology project, it
is nearing the point of becoming an integrated prototype for mis-
sions involving offensive, counter-air attacks, targets of oppor-
tunity, and strike escort. Because we were able to beat Darpa’s
deadlines and technical expectations, the program was redirect-
ed in 1988 toward near-term development. This second phase of
the program, which began in the fall of 1989, has the goal of mak-
ing the entire system run in a real-time procedural language (Ada
or C) on avionics processors.

The prototyping and design concepts developed by the PA team
may have broader application beyond aiding fighter pilots, pos-
sibly in such areas as flying commercial aircraft and air traffic
control procedures. Apparently, Darpa and the Air Force believe
the program has done well enough for them to consider early in-
fusion of this technology in several forthcoming demonstration
aircraft programs.

1o probe further

Papers presented at the annual IEEE Systems, Man and Cyber-
netics Conference often deal with human-machine interaction.
The 1990 conference is scheduled for Nov. 4-7 at the Sheraton
Universal Hotel in Los Angeles. For information, call conference
coordinator Amos Freedy at 818-884-7470.

A more in-depth description of the human-factors engineer-
ing behind the pvi can be found in “An Architecture for Intelli-
gent Interfaces: Outline of an Approach to Supporting Opera-
tors of Complex Systems” by William B. Rouse, Norman D.
Geddes, and Renwick E. Curry, Human-Computer Interaction,
1987-88, Vol. 3, pp. 87-122; Lawrence Erlbaum Publishers, Hills-
dale, N.J.
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