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Diagnosis is an essential activity for any system that
controls autonomous equipment such as unmanned air
vehicles or self-tending satellites; to be effective, the
controls must detect and accommodate equipment faults.
Control-advisory systems that interact with human opera-
tors have a similar requirement for diagnosis.

Pilot’s Associate, a control-advisory system, is
expected to fly in late-1990s tactical fighter aircraft.
PA will improve pilot effectiveness in these complex
aircraft by improving pilot awareness of not only external
situations — threats, for example — but also the internal
status of aircraft systems, and options for accommodating
faulty equipment.

We have used a blackboard architecture in developing
the internal-awareness function called System Status.
Since this subsystem interacts not only with the pilot and
the aircraft but also with other PA functions, let’s digress
for a moment to view this larger context before consider-
ing System Status details.

Purposes of Pilot’s Associate

PA will provide several kinds of assistance to pilots.
These functions include

(1) Assessing external threats and target envi-
ronments;

(2) Assessing the internal status of aircraft systems;

(3) Planning the mission route, and replanning to re-
spond to changes in threats or targets, or to accommodate
equipment faults;

(4) Planning optimal tactics to perform mission goals
within constraints of threat or target behavior and aircraft
performance limits; and

(5) Planning emergency actions to correct faults or
mitigate their effects.

PA’s ultimate purpose is to display useful information
to the pilot and to pass the pilot’s action commands to the
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several examples showing how it
aids pilots and supports other Pilot’s
Associate functions.

Consider the air-to-air mission
described in Figure 2. A group of
fighter aircraft is assigned an “on-
call” mission: They fly to a point in
friendly territory, and wait there until
they receive a target assignment —
. enemy bombers, in this case. We will
i focus on four events in this mission.

When the target is assigned —
Event I — the Mission Planner
evaluates and selects ingress and

Aircraft
bus

egress routes through enemy de-

Figure 1. Pilot’s Associate architecture and interfaces.

aircraft’s actuators. PA monitors signals on the aircraft’s
digital control and communications bus to obtain data
from battle sensors (for example, radar). It also monitors
data on the functioning of aircraft systems, including tem-
peratures, automatic controller commands, and error
codes. Figure 1 illustrates the architecture of these func-
tions and their interactions with the pilot and aircraft.
PA contains subsystems represented by circles in
Figure 1. The Situation Assessment subsystem performs
function (1) above, while the Mission and Tactical Plan-
ners are responsible for functions (3) and (4), respec-
tively. The System Status subsystem performs functions
(2) and (5). and supports functions (3) and (4) by provid-
ing data to planners describing aircraft operating limits.

fenses. SS supplies performance data
to the Mission Planner during this
process to assure that the route is
within the aircraft’s speed capabilities, and to establish
a mission fuel budget.

After attacking the bombers, the lead fighter experi-
ences an oil pump failure in one of its two engines —
Event 2. SS detects this failure, alerts the pilot. and
recommends that the engine be shut down because bear-
ing failure is imminent. Anxious to leave enemy territory
as soon as possible, the pilot rejects engine shutdown.
SS proposes an alternate plan for running the faulty en-
gine at 80-percent power to maximize bearing life. The
pilot implements this plan.

Two minutes later, engine bearings fail — Event 3.
SS alerts the pilot to the failure, and alerts the Mission
Planner that the mission route's outbound leg is no longer
feasible, because the fighter cannot

r SAM launcher

Events:
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achieve supersonic cruising speed as
originally planned.

Shortly after engine failure, an en-
emy surface-to-air-missile launcher
begins tracking the fighter — Event 4.
The Tactical Planner evaluates the
SAM threat, and begins planning eva-
sion options. One option is to maneu-
ver, using the fighter's superior turn-
ing ability to break the missile’s radar
lock. Another option is to deceive the
radar by dispersing a decoy cloud of
radar-reflective chaff. Normally,
pilots would avoid the second option,
because using adecoy is likely to make
the fighter visible to other SAM radars
that had not seen it previously.

However, estimates of single-

Fighter escort

Figure 2. An example fighter mission.

engine performance provided by SS
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SS architecture

Message

Data = Input from bus . :
_Result = $8 database assertion .
*** Message = Input/Dutput with PA Mfssmﬂ Manager

The system architecture reflects the
above roles. SS comprises the follow-
ing groups of functions (see Table 1):

« Diagnosis — Monitoring the aircraft data bus to
detect equipment failures, and conducting tests to isolate
failures in a component or subsystem;

« Limits estimation — Providing the pilot and PA
planners with estimates of the aircraft’s operational
limits, monitoring maneuver plans before and during
execution, and alerting planners if a new failure makes
the plan infeasible;

« Corrective action — Generating corrective-action
plans, and monitoring these plans during execution to
determine whether they have been effective;

« Input/Qutput — Decoding and encoding data from
external transmission protocols to internal database
representations; and

Table 1. System Status logic types and 1/0.

blackboard “knowledge source,” and the database is struc-
tured to express expected module interactions. Our
current prototype contains 18 KSs and 331 blackboard
database objects.

Figure 3 gives an overall structural view — showing
the division of KSs into groups, and SS’s interactions with
the outside world. The important aspects of this architec-
ture from the viewpoint of software engineering are the
modularity and information management that result from
the architecture’s control and communication strategy.

System Status control. KSs communicate through the
database; they do not communicate in any private way. KS
control is centralized, and control decisions are explicit.

» Control and database manage-
ment — Prioritizing and dispatching
SS functions, alerting these functions
to database changes, and maintaining
database consistency.

We implemented the decision logic
of these functions in Lisp and the KEE
frame-based tool,! and adapted exist-
ing Fortran code to provide equipment
simulation models for the diagnostic
and limits estimation functions. We
organized these functions as a black-
board control architecture following
the model described in Hayes-Roth.?

Mission \ Messages
) Manager,

Data

=

Control ot

| Blackboard
nput/ » : Limits Corrective || control
Output D'aEESSIS estimation action
KSs KSs KSs
Result

The functions are subdivided into

Blackboard database

modules based upon the intermediate
results that each module would

produce. Each of these modules is a

Figure 3. System Status architecture.
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« Result — A list of message types
and database changes that will occur

when a KS executes a KSAR;
» Urgency — An index expressing

the relative urgency of this bid in
comparison with others having the
same expected result; and

« Before — A list of bids that must
KS be performed before this one.

Posting a bid activates a special KS
— the Scheduler (see Figure 4) —
which embodies SS control strategy.

The Scheduler KS prioritizes tasks,

—
Domain knowledge Control knowledge
Knowledge Knowledge Knowledge
source source source
A MR Y 4 Dispatcher
Poll! Poll! >< Poll!
Execute! [ Execute!] [ Execute! ]
Query Assert| jAlert Bid| .- |Alert - Task Next task
! |
Citem1 > CItem2 > Bid List > (Task Schedule
Blackboard database

both new and old, on the Task Sched-
ule: It sorts tasks with respect to their
Result and Urgency rankings (stored

in a static table), with adjustments for

Figure 4. Blackboard control architecture.

We have implemented KSs as frames with data and
method slots. Each KS frame can have several slots, but
two of these slots must be methods entitled Poll! and
Execute! with the following functions:

« Poll! determines when the state of the database is
such that this KS can act, and bids an executable knowl-
edge source activation record (KSAR) that will perform
the action.

- Execute! evaluates a KSAR passed from the black-
board controller.

Figure 4 illustrates the function of these routines in
the control scheme. The Dispatcher KS performs the
lowest level control action of the blackboard when it
selects the next task to be performed from the Task
Schedule data structure, and activates the domain KS that
performs that task. All higher level control actions trigger
KS Poll! routines for generating task bids, and order tasks
on the schedule.

For instance, consider what happens when knowledge
source Y asserts new data to Item 2 of the database. This
assertion causes the database to “alert” (that is, send a
message to) the Poll! routines of all KSs. Each Poll!
assesses the potential for action; in this example, only
knowledge source Z finds that it can act. Z expresses this
conclusion by posting a bid to the Bid List data structure.
The bid is a frame with the following slots:

» KS — The name of the KS:

« Focus — The data item to be acted on — in this case,
Item 2;

+« KSAR — The KS activation record (this executable
Lisp expression sends messages to the methods and rules
of the bidding KS that perform the action);

[$%)

task precedence expressed in the
Before slot. When this KS finishes
scheduling, the Dispatcher KS re-
sumes its cycle by selecting Z’s task from the schedule,
extracting the task’s Focus and KSAR elements, and
sending them to Z’s Execute! method. For the tests re-
ported below, KSAR queue sizes varied from a maximum
of 20 during SS initialization to an average of four
when SS was simply monitoring incoming bus data.

This control mechanism, implemented in the current
prototype, has three major deficiencies from the view-
point of SS interactions with the pilot and other PA sub-
systems. First, control decisions are not context depend-
ent. We could make our current approach to prioritization
situational by adding logic to use different tables in each
mission context — for instance, to cause different SS
behaviors in cruise mode versus engaged-offensive mode.
However, the context in which the system operates consti-
tutes a complex space of tactical and mission plans and
goals** with potentially numerous modes. In this environ-
ment, assigning priorities through knowledge-based plan-
ning’ may be a better approach. Metaplanning concepts
developed in the Molgen® and PAM?® projects point toward
methods for merging the reactive behavior of KS Poll!
routines with a strategic level of planning about longer
range goals of the pilot and PA planners.

Second, control does not recognize task threads. SS
ranks each task without considering that task’s relation-
ship to previously executed tasks or to tasks that may be
bid in the future. Therefore, the controller cannot distin-
guish important task sequences, and SS actions may seem
random to a human observer. Random behavior is most
likely during overload situations where several threads of
activity are intertwined. Metaplanning might solve this
control problem by relating tasks to long-term goals.

Third, control actions are hard to explain. Insofar as
SS control decisions seem random, they will be difficult
to explain to the pilot. Building on previous work®
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demonstrating that one can represent
human language in terms of plans and Tpvi ; ’
goals, PA developers have adopted ng{;ﬁ? Plan Rec‘;’gggﬁ’d&d
planning as the underlying logic’ for - i,
understanding pilot action. If we were Corrective [1 Alert W Bt s
to use metaplanning as the control action — 3N
logic for SS, these concepts for under- 1t 4 ... = Plot
standing could be turned around to _ Plan H;V;ﬁm'g )
provide explanations that relate SS eslt.imﬁon failuger—p YR e
temporal activity to the system’s near- § = = e
term and long-term goals. fapflz?e Bfizﬁﬁj' o -
System Status blackboard data- Path  Response time (milliseconds)” Nwp ket Pui
base. The SS blackboard database }-2 *37009 . o
maintains a record of KS intermediate 1:2 , ZZ% . P aﬁié{ei&é{féca ,‘
results in the following data structures: 1-5 5000 = L e TP - Tactical Planner .
* When S stimulated by data for an engine failure MP - Mission Planner
« Messages — Messages from the ; i i : .

external environment (for example,
queries from the pilot or PA), and
messages pointing to results achieved
by SS processing (for example, answers to queries
awaiting transmission);

« Bus data — Time-sequenced data packets from the
aircraft control bus; and

« Control — The Bid List and Task Schedule.

Our system implements structures as class frames,' and
instances as member frames of these classes. SS reuses
instances to avoid the processing cost of creating and
destroying frames. The system maintains a record of the
aircraft’s physical and functional health in the Status
database, whose frames represent aircraft components
and their functions. Dependency links connect compo-
nents to functions. Physical links describe system-subsys-
tem relations — for example, the ailerons “contribute-to”
the flight control system. Functional links describe how
aircraft functions depend upon these systems — for in-
stance, the flight control system “contributes-to” turning.

As a causal-association network,® the Status database
provides the major link between SS diagnosis and limits
estimation functions: The network propagates effects of
physical failures to assess their impact on functional
capability. Each frame points to its parents and children,
using slots, which form contributes-to and reciprocal
depends-on links in the network. Four database routines
implement the active part of the network. Three of these
routines are generic, and are inherited by all network
frames through class-member links. They are as follows:

» Assert! changes data in the slots of a network frame,
and triggers a message to that frame’s Alert!;

« Alert! marks the data in a frame as “stale,” and sends
a message to the Alert! of each parent in the frame’s
contributes-to list. It also sends messages to trigger the
Poll! routines of all KSs; and

Figure 5. PA end-fo-end response time requirements.

* Query! retrieves data from the slots of a network
frame, and sends a message to that frame’s Update! if the
data in that frame is “stale.”

In addition, each frame has an Update! routine that
queries the frame’s depends-on children, computes fresh
values for the frame’s own data slots, and marks the
frame’s data as “fresh.” This routine is specific to the
domain characteristics of each frame.

These four routines not only trigger KSs but also
implement a selective database update strategy. Assert!
and Alert! work together in a forward-chaining manner to
trigger a KS’s Poll! routines when the network changes
state; they also leave a trail of stale data markers to
indicate which parts of the network require updating.
Updates are expensive — SS performs them only on
demand and only for focused portions of the network.
Controlling this update behavior, Query! and Update!
produce backward chaining through dependent portions
of the network when data is requested from a stale source.

Performance testing and evaluation

PA designers defined performance metrics early in the
development cycle,” specifying response times required
to support pilot tasks. Figure 5 shows an end-to-end
analysis of PA dataflows, providing top-level specifica-
tion of SS processing-response times as follows:

* Diagnosis — From appearance of fault data on the
bus to isolation of faults (700 milliseconds);

» Limits estimation — From isolation of faults to
transmission of plan failure messages (300 milliseconds);
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Table 2. System Status response time requirements. Finally, regarding the issue of real-

time responsiveness, SS will never be

, fast enough for all situations — not be-
| Required Actual cause it is inherently slow, but because
: response response processing power may not be available
SS functions {milliseconds} {millisecond range) due to competition from other subsys-

tems. SS will probably be overloaded
Cosn:rr}:iji?edggtabase 15 500 atexactly the moment it is most needed

Dispatehi bid 10 738 — during combat after severe aircraft

Maintain DB consistency 15 damage. Clearly, this subsystem must

Alert! 9472060 be faster, but the perf stan-

Acsert! 2803118 , performance stan
Query! 1+ 37065 dard given in Table 2 is too rigid for

Posting message 10 365 - 1793 software of this type. This is the kind

‘ Posting bid 0 e of specification appropriate for “hard”
| input/output real-time systems like aircraft flight
i Bus monitor 20 1654 - 3265 controls; however, SS has a much
gj;;ggn;geratm ;g 324 '510339 wider range of activity than flight
controls, and the importance of its out-

puts varies with time. It is probably

more appropriate to judge its perfor-

« Corrective action — From isolation of faults to mance against a standard of “responsiveness” that speci-

| -

transmission of alert messages (250 milliseconds), to
transmission of corrective-action-plan messages (1000
milliseconds).

Table 2 shows how we allocated these time budgets to
SS functions.'® We had two goals in mind: The system had
to meet requirements set by the end-to-end analysis above,

.as well as perform useful work while maintaining a maxi-

mum 1/O lag of one second. With this latter goal in mind,
we assigned control and I/O budgets so that these func-
tions would take no more than 110 milliseconds in any
cycle for reading input, scheduling, and reporting results.

The actual-response column lists initial results from
real-time testing. While bid, schedule, and dispatch
activities were fast enough for real time, database man-
agement activities were slow. This sluggishness is due in
part to the KEE environment, which imposes an overhead
on frame access functions as the price for its flexibility.
We have relied heavily on KEE search routines to find
frames by name within knowledge bases; access would
have been faster had we maintained full path descriptions.
Another factor is the combined size of SS knowledge
bases and the KEE environment, which causes excessive
disk-to-RAM swapping; the variability in Table 2’s actual
times is partly due to garbage collection, but is primarily
attributable to this swapping.

The current responsiveness problem is actually
worse than these single-frame access times imply, be-
cause SS often accesses many frames in each cycle. The
contributes-to network can generate enormous Alert!
cascades from a single Assert! action. Similarly, a single
Query! can cause a large cascade of Update! activity.
Once triggered, these cascades cannot be interrupted in
the current prototype, and they happen frequently due to
the dynamic character of the Status database.
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fies situation-dependent processing times and a required
ordering of responses for several task overload scenarios.

Conclusions

First, let’s summarize positive elements of our experi-
ence with the blackboard architecture. The blackboard
emphasizes explicit control and indirect communication;
when combined with frame-based code structuring, these
features facilitated a modular software design. Modular-
ity and a combination of information hiding inside frames
with information sharing on the blackboard have helped
us develop SS in the following ways:

* Providing a uniform control mechanism — We
applied the Poll!/Execute! cycle to rule-based and pro-
cedural KSs easily. KEE provided convenient structures
for integrating these paradigms within a single process,
but the control scheme could just as well have been imple-
mented across multiple processes or processors.

« Clarifying the rationale for subdividing the sys-
tem — KS functionality is described in terms of inter-
mediate results; this caused the design team to focus early
on the cooperative nature of KS activity.

« Providing a robust environment for module inte-
gration and testing — Since KSs do not communicate
directly, it is possible to add new KSs or modify existing
ones without endangering vital but hidden communica-
tion links. It was also easy to run with partial software
configurations, because control logic is localized in the
Scheduler KS and easily modified.

« Permitting incremental development of control
knowledge — The present prototype functions reasona-
bly well with task scheduling based on a static priority
table, yet the architecture permits expansion to more
responsive methods.
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We have already discussed problems we found in the
current blackboard architecture. We are investigating
solutions to these problems, as follows:

» Frame access is slow — Insofar as this problem is
due to KEE, we can solve it by changing to more compact
frame systems, including Flavors or CLOS, or to non-Lisp
object-oriented representations like C++ or Objective-C.
We can mitigate the other source of slow access —
searching for frames — by using efficient memory organi-
zation and frame access by path name, as practiced in the
University of Massachusetts’ Generic Blackboard.!!

« RAM-to-disk swapping slows processing — The
easiest and cheapest near-term solution is simply to buy
more memory. However, as SS moves toward a deploy-
able real-time form, it must shed its KEE shell to become
smaller, and we may need to implement explicit memory
management to achieve task-coordinated swapping.

« Assert!/Alert! cascades reduce responsiveness —
While it is possible to speed up individual frame access
operations, we have reason to believe that these cascades
will always be a problem. We may have to limit the scope
of the network to only those relations required for fault
propagation at a high level of abstraction. This is a design
trade-off between explanatory detail and responsiveness.

» Query!/Update! cascades reduce responsiveness
— Limiting the scope of the contributes-to network would
also reduce this processing load. SS could control cas-
cades if the database were reconfigured so that update
tasks were scheduled just like KS tasks. This would
enable the originating KS to decide whether it has time for
this Query! in its current task; if not, the KS could bid to
complete the task later or bid a similar, short-cut task to
get the same answer.

s ystem Status development has required the integra-
tion of logic expressed in several different programming
paradigms — for instance, rules, frames, and procedural
code in Lisp and Fortran. When we began designing the
system in early 1986, blackboard architectures — pio-
neered in the Hearsay project'? and developed more re-
cently into a generalized concept for software control!?
— seemed to offer a solution to this integration problem.
Since that time, several SS prototypes have proved the
blackboard to be a robust and useful tool for the entire
software engineering cycle — from design through test-
ing. Furthermore, when combined with frame structuring
of knowledge bases, the blackboard scheme helped solve
several difficult software-project-management problems.

However, the SS team is now focusing on real-time
operation, and concern has arisen that the blackboard’s
overhead may compromise responsiveness. Initial testing
against real-time metrics found the system slower than
required. While the blackboard contributed to this

sluggishness, this architecture is still desirable because of
its software engineering benefits. We are investigating
changes in the SS blackboard — including a more com-
pact frame representation, faster database access and
management techniques, and a better focus-of-attention
mechanism — to provide the required responsiveness.
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