DARPA STRATEGIC COMPUTING INITIATIVE

Pilot’s Associate

A Cooperative, Knowledge-Bused System Application

Sheila B. Banks and Carl S. Lizza, Wright-Patterson Air Force Base

l ODAY’S FIGHTER PILOTS FLY

complex aircraft to perform complex tasks.
These pilots mustbe keenly aware of exter-
nal situations — threats, for example — as
well as the internal status of aircraft sys-
tems, and options for dealing with faulty
equipment. Intricate aircraft systems in-
crease the need for intelligent cooperation
between pilots and aircraft. An additional
requirement forintelligent systems designed
to aid pilots is real-time operation in highly
dynamic situations.

The Pilot’s Associate program is a joint
effort of the Defense Advanced Research
Projects Agency and the US Air Force,
managed by the Air Force’s Wright Labo-
ratory. The program began in February
1986 as an application demonstration for
DARPA’s Strategic Computing Initiative.
DARPA wanted to advance the program’s
technology base, principally in the area of
real-time, cooperating knowledge-based
systems. The Air Force wanted to explore
the potential of intelligent systems appli-
cations to improve the effectiveness and
survivability of post-1995 fighter aircraft.

The Pilot’s Associate concept developed
as a set of cooperating, knowledge-based
subsystems: two assessor and two plan-
ning subsystems, and a pilot interface. The
two assessors, Situation Assessment and

ARTIFICIAL-INTELLIGENCE TECHNOLOGY CAN PLAY

AN IMPORTANT ROLE IN THE DYNAMIC, COMPLEX DOMAIN
OF FIGHTER AIRCRAFT. THIS ARTICLE EXPLORES THE
LESSONS WE LEARNED IN BUILDING A COOPERATIVE,
KNOWLEDGE-BASED SYSTEM TO HELP

System Status, determine the state of the
outside world and the aircraft systems,
respectively. The two planners, Tactics
Planner and Mission Planner, react to the
dynamic environment by responding to
immediate threats and their effects on the
prebriefed mission plan. The Pilot-Vehicle
Interface subsystem provides the critical
connection between the pilot and the rest
of the system. The interface ensures that
the system as a whole provides the infor-
mation the pilot wants, when it is needed.

The Phase 1 Pilot’s Associate program
contained two distinct efforts. One focused
on air-to-ground mission scenarios and
platforms, and was developed by a team
directed by McDonnell Aircraft Company.
This article focuses on the air-to-air sub-
systems developed by a team led by Lock-
heed Aeronautical Systems Company. We

PILOTS MAKE DECISIONS.

participated in both development teams as
the Air Force’s program and technical
management.

The first significant program demon-
stration, Demo 2, was scheduled for two
years into the program. This was intended
as a nonreal-time, technical demonstration
of a complete but skeletal Pilot’s Associate
system. The objective, in other words, was
to demonstrate an architecture for cooper-
ating knowledge-based subsystems in a
system with limited depth of knowledge
and capability. An operationally impres-
sive system was not anticipated during the
early stages of development. However,
Demo 2 gave us a glimpse of the potential
usefulness of Pilot’s Associate in the com-
plex air-combat environment.

Phase 1 efforts culminated in Demo 3,
originally scheduled for three years into

18

0885/9000/91/0600-0018 $1.00 © 1991 IEEE

|EEE EXPERT

the program. As a result of Demo 2’s suc-
cess, the program was redirected to apply
Pilot’s Associate technology to a current or
planned service aircraft and to emphasize
near-term computing hardware. Resched-
uled to the fourth year due to this redirec-
tion, Demo 3 showcased a functional pro-
totype intended to execute in nonreal time.
In addition to the architecture for cooperat-
ing knowledge-based subsystems required
at Demo 2, the Demo 3 system contained
the functional prototype capability envi-
sioned for Pilot’s Associate. However, the
Demo 3 prototype still lacked the knowl-
edge depth required for full functioning.

Phase 2 is now under way, and a fully
functional system executing in a real-time,
man-in-the-loop environment should be
completed in 1992. Looking forward to
this goal, Phase 1 also included system and
subsystem analysis to determine both
hardware and software requirements for a
fully functional real-time system.

The first two years: Demo 2

The Lockheed/Air Force team success-
fully completed the first milestone, Demo
2, in March 1988 in a laboratory cockpit
simulation driven by six Symbolics ma-
chines and a VAX. Because Demo 2 was a
nonreal-time demonstration, the team also
generated a real-time mission replay to
allow visualization of the final Pilot’s As-
sociate product. We conducted the live,
nonreal-time laboratory run using the same
mission, which allowed system interaction.

The scenario. The Demo 2 mission sce-
nario was a two-ship, offensive mission
against a composite force of fighters and
bombers. The Demo 2 mission objective
was to destroy the bombers while avoiding
the escort fighters. The mission took place
at high altitude.

The mission. The first incident high-
lighting the system’s pilot-aiding capabil-
ities occurred while still in the cruise phase
of the mission. A stuck fuel valve required
correction. Given prior authority, Pilot’s
Associate corrected the problem and ad-
vised the pilot. After crossing the forward
edge of the battle area, the aircraft was
advised of a target assignment to intercept
the four-bomber strike force protected by
four fighter aircraft. Pilot’s Associate

| surface-to-air missile sites. This strategy

created a new mission plan, including a
probable intercept point consistent with
premission attack strategies.

As threatening aircraft entered sensor
range, Pilot’s Associate allocated an on-
board passive sensor to monitor the most
critical threats. The system detected a
combat patrol plane breaking orbit, but
decided it was not an immediate threat to
the mission. As the pilot flew the mission
route, he could see his aircraft signature
being managed with respect to known

THE PILOT DID NOT NEED

TO MANIPULATE DISPLAYS —
Prot’s AssoclaTE
COMPLETELY CONTROLLED
DISPLAY SELECTION,
CONTENT, PLACEMENT,

AND FORMAT.

involves brief, expected detections by the |
missile sites, but minimizes exposure.
Pilot’s Associate began suggesting mi-
nor course corrections to help the pilot
maintain preferred intercept tactics, which
involved remaining beyond visual range.
As the missile launch point approached,
the system detected a slight drop in engine
oil pressure and presented a succinct mes-
sage of minimal urgency to the pilot. The
pilot had already authorized Pilot’s Asso-
ciate to activate the target tracking radar,
which soon began to overheat. The pilot
tracked the targets on his tactical situation
displays, which provided missile launch
acceptability regions. The system calculat-
ed and displayed offensive and defensive
regions, and analyzed and suggested weapon
allocations for both the lead plane and the
wingman. The pilot launched missiles at
the bombers while the oil pressure contin-
ued to drop and the radar reached a critical
temperature. Although authorized, Pilot’s
Associate did not shut down the radar since
it was still needed to illuminate targets.
The pilot was making his turn for egress

and monitoring the missile flyout when an
unknown surface-to-air missile launched.

Pilot’s Associate advised the pilot of an
effective defensive maneuver while it dis-
pensed chaff and flares at appropriate in-
tervals. The oil pressure problem became
critical withimminent bearing seizure. The
system had no authority over the engine
and continued to keep the pilot updated.
The evasive maneuver and countermea-
sures enabled the aircraft to survive the
surface-to-air missile explosion; however,
explosion debris damaged control surfaces
and the remaining good engine. The system
planned a new egress route to an alternate
recovery base, which was consistent with
the aircraft’s remaining capabilities while
minimizing exposure to further threats.

Technical overview. The Demo 2 sys-
tem executed the 30-minute mission in
approximately 180 minutes. This was
roughly 1/6threal-time operation, although
all measurements were made with devel-
opment-level code and no debug or display
code was removed or deactivated. We used
a stop-clock approach to maintain time
synchronization between the nonreal-time
Pilot’s Associate and the real-time aircraft
simulation. When a subsystem needed to
catch up with the simulation, it paused the
simulation temporarily and effectively ex-
ecuted in zero mission time. To obtain an
accurate picture of operating in a real-time
environment, we recorded all message
traffic between Pilot’s Associate, the
cockpit, and the simulation during a repre-
sentative mission execution. Then, by ad-
justing the time tags of the messages that
executed in zero mission time during sim-
ulation pauses, and replaying the messages
through the simulation, we were able to
model actual system execution inreal time.
The only liberty we took was adjusting
message timing; we retained all errors, the
most noticeable being an incorrect mes-
sage for a system failure. Given this op-
portunity to view Pilot’s Associate in real
time via replay, the importance of display
and interface formats became apparent.

The plan-and-goal graph and dictionary
form the underlying functional skeleton
for Pilot’s Associate. The graph’s hierar-
chical structure produces a common plan-
ning language among modules, and the
dictionary serves as the explanation of that
structure, its meaning, and its purpose. The
need to communicate similar information
about plans and goals to multiple sub-
systems, often in different formats, drove

JUNE 1991

19

Pilot actions ||
(_Operator model)

Plan
generation

Plan
understanding

Situation model

Situation data
Proposed tactical plans, sensor use plans,
route plan, rules of engagement, briefed
tactics, threat assessment, sensor data,
system status,cooperative data,
stored facts, mission data

Plan element

Pilot information
requirements

Execution
procedures

Execution
authority

Operator model
data

Selection criteria

Execution conditions

Monitoring requirements

® Approved plan
® Static plan
© Invoked plan

Fgufe 1. The plan-and-goal graph.

the effort to establish a common language.
A representation of the graph and how it
provides subsystem integration is shown
inFigure 1. The graphis arelatively simple
structure, resembling a conventional And/
Or tree. A plan can be accomplished only
by successfully completing all of its chil-
dren goals; conversely, a goal can be satis-
fied by one or more of its children plans.
The graph structure simply represents the
dictionary, which contains detailed descrip-
tions of each node, sufficient for uniform
interpretation and proper subsystem im-
plementation. Demo 2’s graph and dictio-
nary required configuration management,
and proved difficult to maintain without
automated tools.

The team structured this software in a
heterogeneous, loosely coupled system.
Individual subsystems were not restricted
to a particular development environment
or software approach; therefore, each indi-
vidual subsystem was implemented with
an approach considered appropriate for its
domain. A sixth subsystem, the Mission
Manager, originally served as a common
communications link between these dis-
parate software structures, and functioned
as an invaluable integration tool for this
loosely coupled system. The Mission Man-
ager later maintained the global blackboard,
the central repository for active plans and
goals instantiated from the graph.

The Pilot-Vehicle Interface. The cre-
ation of an associate must be driven by
requirements to support human decision-
making capabilities, in this case through an

mtelligent and intuitive intertace. 'I'here-
fore, the interface must be the central Pi-
lot’s Associate subsystem.

The Pilot-Vehicle Interface combines
interface management, an adaptive aider,
and an error monitor. This interface must
be able to recognize pilot intentions and
model human resources and performance.
Because many plans compete for a pilot’s
attention, interface management selects the
form, content, modality, and placement of
information in the cockpit. For the Demo 2
cockpit, interface management allocated
information to seven logical display sur-
faces on three physical displays and a voice
synthesis channel. Interface management
arbitrates between competing plans by con-
sidering importance and urgency, pilot re-
source demands as a result of presented
information, the current system context
established by the other subsystems, and
the intent recognizer. The intent recogniz-
er, a script-based reasoner, tries to explain
pilot actions with respect to competing
hypotheses instantiated from the graph’s
leaf nodes. Actions that the intent recog-
nizer cannot explain are identified to the
error monitor for consequence analysis and
possible remediation. At Demo 2, the in-
terface subsystem was implemented in
Common Lisp and contained almost 2
megabytes of knowledge.

The most difficult aspect of demonstrat-
ing an intelligent and intuitive interface
was that, as the interface became more
successful, it became less apparent. Its
features were difficult to detect unless they
failed to function. After considerable work,

Demo 2 successfully showcased an intelli-
gent cockpit where the pilot did not need to
manipulate displays during missions —
Pilot’s Associate completely controlled
display selection, content, placement, and
format. No pilots criticized the system’s
choices or timing of displays. Most criti-
cism centered on aspects of displays that
the pilot could tailor, such as a north-up
orientation versus track-up. Before the
mission, pilots customized many aspects
of the interface as well as levels of automa-
tion. The pilot could preapprove plans for
execution, implicitly or explicitly approve
or disapprove plans by actions, or ignore
plans. When a plan was ignored, Pilot’s
Associate continued to be responsive to the
situation and the pilot’s needs. In all situa-
tions, the interface neither assumed au-
thority nor negated the pilot’s authority.

Situation Assessment. Demo 2’s Situ-
ation Assessment subsystem connected the
pilot and Pilot’s Associate to the outside
world. This subsystem maintained a data-
base of air and ground objects using infor-
mation from internal sensors (correlated
by asensor data manager external to Pilot’s
Associate) and from external sources data-
linked to the aircraft. Situation Assess-
ment inferred or calculated additional at-
tributes for these objects, such as lethality,
intent, priority, and impact. The subsystem
maintained this track information and con-
tinually performed assessments for more
than 40 objects in the environment: friend-
ly, foe, and neutral. It managed uncertainty
in threat intent using General Electric’s
Reasoning with Uncertainty Module.! RUM
could also be used for dealing with uncer-
tain or missing information; however, for
Demo 2, perfect sensor information was
assumed. For Situation Assessment code
development, we used Intellicorp’s
Knowledge Engineering Environment?
primarily because it supported RUM.

Two important aspects of the Situation
Assessment design were information
streams and monitors, which used informa-
tion from the planner subsystems to focus
assessment activities on tactical situations
relevant to the other subsystems. Informa-
tion streams were derived from the infor-
mation requirements that other subsystems,
primarily the Pilot-Vehicle Interface,
imposed on Situation Assessment — that
is, periodically collected or exception-based
details about objects. The second form of

20

IEEE EXPERT

intermodule communication, the monitor,
detected events affecting a plan and noti-
fied the requester. Monitors typically con-
tained much less information than infor-
mation streams and were often used to
trigger an information stream for detailed
communications. The combination of as-
sociating information requirements with
current system plans and using monitors
and information streams to meet those re-
quirements allowed Situation Assessment
to perform its functions while minimizing
both computing time and message traffic.

Mission Planner. The Mission Plan-
ner’s foundation was a route planner de-
signed as a stand-alone, interactive system
for strategic applications. Using a dynamic
programming algorithm, the route planner
incorporated complex aspects of route
planning, such as aircraft signature and
performance characteristics. As the design
developed, this ground-based, point-to-
point planner requiring a human operator
evolved into an automated, on-board, point-
to-region planner. The point-to-region ca-
pability essentially required running the
dynamic programming algorithminreverse.
The goal node for the algorithm became
the starting point, and heuristics were used
to select an intercept route from the result-
ing paths. Control and evaluation functions,
previously performed by a human opera-
tor, were implemented in Lisp as functions
of the knowledge-based portion of the
Mission Planner. This executive module
used the route planner, implemented in
Fortran, as a planning resource. Though
capable of planning over a three-dimen-
sional space, the route planner was limited
to two dimensions for efficiency during
Demo 2.

Tactics Planner. This subsystem rea-
soned about threats and targets for attack
or evasion, ordered Situation Assessment
to monitor high-interest threats, and di-
rected sensor configurations to obtain
needed information. It did not invent tac-
tics, butrecommended ones consistent with
the pilot’s own prebriefed tactics for the
specific mission. However, suggested tac-
tics were situation dependent, and the sub-
system adapted the prebriefed tactics in
areas of geometry and timing to fit the
current, dynamic situation. Also part of the
Demo 2 subsystem was a limited sensor-
management capability. For example, the

Tactics Planner could select the most tac-
tically critical air threats for continual
passive monitoring.

The Tactics Planner was organized as a
hierarchical tree of plan elements. Each
element represented a small tactics sub-
problem and could be considered a planner
capable of reasoning about its particular
domain. This representation depended on
the system’s plan-and-goal graph and re-
quired aunique development environment.
Kadet, a Lisp-based planning tool and rea-
soning engine built by ISX Corporation,

e

THE STRUCTURE REMAINED
LOOSELY COUPLED AND
HETEROGENEOUS. AS
SYSTEM FUNCTIONALITY
GREW, A COMMON
LANGUAGE FOR SYSTEM
PLANS AND GOALS PROVED
NECESSARY.

formed the subsystem’s foundation. The
reasoning engine was a complex and spe-
cialized mechanism with access to black-
boards, objects, plan elements, and facts.
Each plan element contained knowledge
expressed in rules. The Kadet rule system
supported both forward-chained and back-
ward-chained reasoning. To overcome
some performance limitations associated
with available Al development environ-
ments and tools, Kadet constrained reason-
ing within partitions of the overall knowl-
edge base to improve response times.

System Status. This subsystem focused
on assessing aircraft systems and on cor-
rective procedures following fault diagno-
sis. The primary means to detect faults
were parametric limit checks and inter-
pretation of built-in test codes. A main
focus was engine status, primarily due to
readily available domain knowledge. The
subsystem also evaluated proposed mission
and tactical plans relative to aircraft
performance limitations, and calculated
the fuel flow matrix used by the Mission
Planner to generate routes. At Demo 2,

System Status displayed architectural
breadth and the ability to support future
enhancements, but it severely lacked func-
tional depth. It was originally implement-
ed in KEE, but moved to Lisp code in the
form of decision trees for efficiency.

Phase 1 cvimination: Demo 3

Taking advantage of Demo 2 system
evaluations and lessons learned, the Lock-
heed/Air Force team wanted to make
changes in software design, implementa-
tion strategies, and development environ-
ment tools. Demo 3 was required to increase
the current system’s functionality and to
focus on high-payoff requirements for a
current or planned service platform. After
choosing a candidate platform, we needed
to shift from experimental computing ar-
chitectures to those being developed for
military application in the 1990s. The re-
directed program also needed to retarget
Pilot’s Associate functionality for specific
mission/vehicle requirements and to iden-
tify a methodology to move system hard-
ware and software into the selected aircraft.
However, the original program philosophy
— to apply complex, knowledge-based
systems to aid pilots — survived.

In November 1989 we conducted Demo
3, the final stage of Phase 1. The selected
service platform for the air-to-air effort
was, naturally, an advanced tactical fighter
(ATF is a generic term for the Air Force’s
“next-generation” fighter aircraft). As in
Demo 2, this demonstration included a
real-time mission replay and a live Pilot’s
Associate system running in nonreal-time.
We also demonstrated results of real-time
investigations and a skeletal implementa-
tion of the cooperating, real-time Tactics
Planner and Situation Assessment sub-
systems.

The scenario. The Demo 3 mission sce-
nario was a high-altitude, force-protection
fighter sweep for a flight of strike aircraft.
Four aircraft, named Knight Flight, were
equipped with Pilot’s Associate systems
and operated as two two-ship elements
(called ownship and wingman). Their mis-
sion objective was to protect eight F-15E
strike aircraft (called Hammer Flight) from
enemy fighters. Two additional fighters,
called Cannon Flight and also equipped
with Pilot’s Associate, were given the task

JUNE 1991

2

System Status

Planners

. sensor data

Situation Assessment mangqer data ;

Pilot intent

Proposed pians

Pilot-Vehicle Interface

”Display

/ control

Pilot action

Pilot's

Associate E
data and plans

Display and control (crewstation)

)

Figure 2. Dataflow in the Demo 3 Pilot’s Associate.

of keeping the target area clear of enemy
fighters immediately before and during the
attack. The mission scenario included en-
gagements beyond visual range.

The mission. The first visible Pilot’s
Associate action occurred prior to crossing
the forward edge of the battle area. Pilot’s
Associate detected a fuel transfer failure
and determined that the problem was a
stuck fuel valve. Pilot’s Associate toggled
the fuel valve based on premission autho-
rization from the pilot, and informed the
pilot of the corrective action. Shortly after-
ward, a generator malfunctioned. Pilot’s
Associate isolated the fault and presented
the recommended corrective action to the
pilot. The pilot accepted the recommenda-
tion, the system performed the emergency
checklist, the generator reset, and Pilot’s
Associate updated the pilot on the genera-
tor status. From this point on, using pre-
mission authentication information and
code inputs, Pilot’s Associate responded
to friendly external requests for authenti-
cation and for friend-or-foe identification.

Immediately after crossing into the bat-
tle area, Pilot’s Associate detected and
assessed the mission impact of an unsup-
pressed surface-to-air-missile. Pilot’s
Associate generated a plan for evasion
and recommended to the pilot a tactic to
defeat the inbound missile. With the pilot’s |
pre-mission approval, Pilot’s Associate ‘

activated appropriate countermeasures to
help defeat the missile. Then Pilot’s Asso-
ciate provided a low-observable route to
rejoin the strike force and coordinated a
two-ship weave maneuver with the wing-
man to match the speed of the strike flight.

Pilot’s Associate continually monitored
the changing environment. By using geo-
metrical information (position, heading,
altitude, speed, etc.) regarding its own air-
craft, the wingman, and other cooperating
elements, Pilot’s Associate evaluated the
best use of all aircraft resources and exe-
cuted sensor plan contracts to provide the
most current and vital information about
threatening objects in the environment.
Pilot’s Associate detected an enemy com-
bat air patrol breaking orbit, and interpret-
ed the action as hostile intent directed at
the strike flight. The system then detected
a second element of enemy aircraft and
determined that it also posed a threat to the
strike flight. Pilot’s Associate sorted and
assigned the threats to Knight Flight mem-
bers according to the lead pilot’s premis-
sion targeting contract. The system helped
the pilot with the suggested tactical plan by
coordinating the maneuver geometry, sen-
sor usage, weapon selection, and launch
opportunity. As Knight Flight maneuvered
to launch, a hostile aircraft launched an
air-to-air missile toward the aircraft, but
the pilot evaded the missile with a maneu-
ver suggested by Pilot’s Associate. While

successfully engaging and defeating the
threats, Knight Flight became separated
from the strike flight. Pilot’s Associate
planned a rejoin route while continuing to
support the need to minimize exposure and
maintain mission constraints. Knight Flight
rejoined the strike flight and, due to a
mission abort of Cannon Flight, swept the
targetarea. With a successful sweep, Knight
Flight kept the target area clear of enemy
fighters while the strike flight attacked the
target and accomplished the primary mis-
sion objective.

As more threats were encountered, Pi-
lot’s Associate assessed the danger, noti-
fied the pilot of a surface-to-air missile
launch, and provided an optimum evasive
maneuver. A missile explosion damaged
the right engine and right leading-edge
flap. Pilot’s Associate assessed the dam-
age and used the degraded flight envelope
and reduced flight-control response to plan
recovery. Pilot’s Associate notified the pilot
of the damage and provided appropriate
checklists to deal with this multiple emer-
gency. The system planned an egressroute,
taking into account the aircraft’s degraded
performance capability and the need to
land at the nearest suitable base once in
friendly territory. It presented the pilot
with the egress route and suggested prima-
ry and alternate landing bases suitable for
the emergency situation.

On the egress, the inertial navigation
system and a generator failed. Pilot’s As-
sociate notified the pilot, who called for
the generator checklist to see which sub-
systems were affected. The pilot complet-
ed the checklist provided by Pilot’s Asso-
ciate and reset the generator. Pilot’s
Associate helped realign the inertial navi-
gation system so that it again functioned
properly. Once in friendly territory, Pilot’s
Associate provided information on the
emergency landing base: current base sta-
tus, weather, runway parameters, and ap-
proach procedures. The system also helped
the pilot file an in-flight report of the suc-
cessful mission.

Technical overview. The Demo 3 Pi-
lot’s Associate performed better than the
Demo 2 system, with a tremendous in-
crease in functionality. The more complex
fighter-escort mission executed at roughly
three times real time (with development-
level code, debug code, and display code
removed or deactivated). Demo 3 used the

22

IEEE EXPERT

| Cockpit

Intent
inferencer

Adaptive|

Assessors

- Planners l

Proposed plan information L

Assessors
Situation data

Event-based
display selector

Aircraft Situation

data data

.
Z aider ‘ Explained s
] actions Adaptive errors Error ;
: aider monitor :
i Proposed . i
D ans piot] 4 Pilotintent | :
! resources ;
Pilot resource Information ; Display
5 model manager Display ! generator
] Plan Intent-based format
S — — . '
anners Proposed plans | proposer display selector || commands: T ?

Figure 3. The functional design of the Demo 3 Pilot-Vehicle Interface.

same stop-clock approach as Demo 2 to
stay in step with the real-time simulation.

The basic structure of this approach re-
mained a heterogeneous, loosely coupled
system, with each subsystem implemented
inadomain-appropriate fashion. The Demo
3 concept of system dataflow is depicted in
Figure 2. The Mission Manager subsystem
remained as the keeper of the global black-
board, a repository for active plans and
goals, and a communications channel be- :
tween subsystems. However, as Pilot’s !
Associate matured from Demo 2, many of
the early functions of Mission Manager
were decentralized into the individual sub-
systems.

The plan-and-goal graph and dictionary :
remained, increasing in importance. As
system functionality grew, a common lan-
guage dealing with system plans and goals
proved necessary. However, updating

graph information became cumbersome as
development continued and as the func-
tionality represented by the graph in-
creased. The need to continue the graph
concept led to the development of auto-
mated tools to maintain and update its
structure and dictionary.

At a more detailed level, the Demo 3 !
system featured several new functions and
improvements to the cockpit, displays, and
simulation environment. It also incorpo-
rated many reactive elements, realistic sen-

sor models, and planning considerations of

additional flight elements and an escorted
strike group. The pilot could now query the
system for information on navigation,
threats, and systems. The Demo 3 system

could plan interactively with the pilot and |

be more responsive to pilot inputs.

A key feature of pilot interaction and
confidence in system performance was the
Mission Support Tool, which originated as
an idea of the program’s Operational Task
Force, a program advisory group whose

members had considerable tactical fighter |

experience. This tool demonstrated how
the pilot could set authorization limits for
Pilot’s Associate and tailor its planning
performance regarding engagement tac-
tics, the use of sensors and countermeasures,
mission planning, communications, and
electronic warfare. The Mission Support
Tool was not a new idea: pilot tailoring of
the system existed at Demo 2. However,
with increased system functionality, par-
ticularly in tactics planning, responsive-
ness to pilot needs and desires required a

more extensive tool for pilot tailoring. For |

the first time, the complete vision of Pilot’s
Associate as a true partner for the pilot
emerged.

The enhanced performance of Pilot’s
Associate resulted from integrating the full
Demo 2 system capability with functional-
ities developed for specific Demo 3 re-
quirements. We could not possibly describe
adequately all of the system’s capabilities;

JUNE 1991

the following subsystem accomplishments
are simply highlights.

The Pilot-Vehicle Interface. This sub-
system retained Demo 2’s integrated de-
sign, but its individual functions evolved
into new implementations. The design ap-
proach was to try to reduce pilot overload
through

« intent inferencing — inferring pilot
intent and communicating it to the other
subsystems;

« display management — configuring
displays and controls according to pilot
information requirements and intelligently
communicating messages to the pilot; and

« adaptive aiding — performing preap-
proved tasks, detecting possible pilot er-
rors, determining their consequences, and
proposing error remediation if necessary.

All Demo 2 interface functions were
expanded for Demo 3, as shown in Figure
3. One significant enhancement, pilot in-
tentrecognition, was accomplished through
three types of input. In addition to the
script-based reasoner developed for Demo
2, Demo 3 added a plan-based reasoner,
which tried to explain pilot actions based
on plans and goals, as well as situational
data about the state of the world. The plan-
based reasoner was a more robust effort to
infer pilot intent, allowing the subsystem

torecognize pilot intent when pilot actions
were not part of a current task.

Two additional concepts complemented

the original design. First, interface man-
agement evolved into an intent-based dis-
play selector and an event-based display
selector. The intent-based selector encom-
passed the original design for this function,
configuring cockpit displays with the most
pertinent information derived from the
active plans inferred by the intent recog-
nizer as well as from plans proposed by
other subsystems. The event-based selec-
tor determined the best method and modal-
ity for telling the pilot about a specific
event. Eachevent type had an “expert” that
decided the method of pilot notification.
Because the expert reasoned about various
display resources. the system was better
able to deliver a significant event message
to the pilot.

The second new concept implemented,
the plan proposer, received plans from oth-
er subsystems and intelligently presented
these recommendations to the pilot.

We continued to work on the subsystem
in Common Lisp. At Demo 3, the sub-
system contained 6.2 megabytes of total
source code, and its knowledge base con-
tained 3.4 megabytes of knowledge. The
knowledge not contained explicitly in the

plan-and-goal graph was expressed using
828 rules. Execution times were much im-
proved from Demo 2, falling within the
response time goal for all major functions
except the interface management areas of
the intent-based selector and the event-
based selector. Therefore. the interface
subsystem was in an excellent position for
the major focus of Phase 2 development —
achieving real time.

Situation Assessment. This subsystem
achieved major functionality leaps from
Demo 2 and also underwent design revi-
sions that maintained performance while
increasing capability (see Figure 4). One
major improvement was the inclusion of
“real” data into the system. The subsystem
no longer reasoned with perfect data and
knowledge about everything in the envi-
ronment. Developers implemented an in-
terface with a generic sensor data manager,
in which sensor models portrayed generic,
but realistic. real-world sensors. The Situ-
ation Assessment subsystem developed a
structure to handle four types of object data
uncertainty: uncertainty in measurement
error, uncertainty in attributes with dis-
crete values (such as class or type). uncer-
tainty representing the probability that an
object actually exists. and uncertainty due

to missing information at the numerical,
discrete. or object level.

Situation Assessment gradually devel-
oped into a subsystem that intelligently
managed how and when to perform its
assessment activities. This was a signifi-
cant improvement, increasing both func-
tionality and performance. We used KEE
initially to develop the subsystem because
of its compatibility with the RUM devel-
opment environment. After we finished
Demo 2, RUM-Runner became available,
which let us compile the RUM rules. Using
compiled rules eliminated the need for KEE:
therefore, we rewrote the subsystem using
Lisp to store data and the Automated Rea-
soning Tool to control the monitors and
information streams. In addition. we hier-
archically ordered the conditions of each
monitorevaluation so that the least compu-
tationally expensive conditions for moni-
tor success were checked first. These lev-
els were designed to increasc monitor
efficiency while decreasing computation
time.

Approaching Demo 3, the Situation As-
sessment software design was stable, and
efficiency dictated removing all develop-
ment tools from the subsystem software
and rewriting the control portion of the
subsystem in Lisp. Plan-based assessment

ot-Vehicle
Interface

Mission
Planner
Sanniay . gy i Tactics
Pilot-Vehicle b P ; qunner
Interface i ¢| Database Monitor Monitor statis :
i updates manager ; L’. Mission
Manitor Monitor status : Manager
andinfo |
stream | - Time of next Update rate |
Mission requests | . ‘ update Data rates change Sensor
Manager ! ‘ Accessor functions control Manager
f Track attributes b\\‘% | :
I i database \ a ‘
Tactics J'- v 7 : :
Planner l Rules “ \ Stored ‘ ’ Algorithms ‘

24

IEEE EXPERT

in the Demo 3 system also increased the

subsystem’s efficiency by using monitors

and information streams to focus assess-
ment. The development of Situation As-
sessment through Phase 1 completed a cy-
cle from an overworked, number-crunching
program to a subsystem that intelligently
controlled assessment and computation.
and disseminated that information in a
computationally efficient manner. At Demo
3. final Situation Assessment code includ-
ed 51 rules for managing processor re-
sources, 150 RUM rules for calculating
uncertain parameters, 37 processing func-
tions, and more than 0.7 megabytes of Lisp
source code.

Mission Planner. This subsystem un-
derwent major revisions after Demo 2, as
Figure 5 shows. However, the original func-
tions remained: an executive for heuristic
control, assessment, and evaluation, and a
dynamic-programming algorithm for route
planning. The original route planner. host-
ed ona VAX 11/780 along with the Pilot’s
Associate aircraft-simulation software, pre-
sented problems as implemented for Demo
2. The computer resource contention be-
tween the simulation and the dynamic-
programming route planner caused extreme-
ly slow execution. Although the executive

System
Status

Mission
Manager

Tactics
Planner

Situation
Assessment

Premission
data

reduced the search space and runtime by
using a heuristic search algorithm to find
subplanning theaters as a preprocess to the
algorithm, this approach was still slow and
inefficient.

We redesigned the route planner for Demo
3 to improve its application in the airborne
planning domain, implementing the plan-
ner in C for software efficiency. and hosting
iton a Sun workstation to increase computa-
tional efficiency. This route planner was
no longer limited to a two-dimensional
planning space. It represented routes in
three dimensions: longitude. latitude. and
altitude. However, no time dimension was
implemented. A time-based planning ap-
proach would provide solutions to prob-
lems regarding moving air threats. posi-
tional relationships to escorted flights, and
multivelocity requirements that were dif-
ficult or impossible to handle with the
Phase 1 approach. For Phase 2. we plan to
consider time-based planning as well as
specialized route-planning hardware to in-
crease the Mission Planner’s functionality
and to decrease runtime.

The heuristically controlled Mission
Planner executive used the route planner to
supply routes from which to sclect. The
executive examined different routes and
evaluated costs and options before the

Plan format
and critical
threats
Planning
control

Plan
evaluation
Threat and selection

database

]

Matrix .
1 Optimizer \

updates |

¢ b

Path

| extraction

el
o
8
po
3
o
=
=

TuNever

subsystem made a selection or formulated
a mission plan. The Demo 3 executive
could handle both the Demo 2 intercept
mission and the Demo 3 escort mission,
cachrequiring unique heuristic control. An
intercept mission required that the routes
be evaluated for speed, fuel. timeliness. and
threat detection. An escort mission needed
aroute based on speed. fuel, time to return
to the original course, average distance
from the escorted package, and threat de-
tection. After a mission replan triggered by
an off-course detection. new threat data, or
an aircraft performance change, the Mission
Plannerexecutive assessed the missiontype
and the current context to determine which
route phases to generate and what goals to
achieve. This unique heuristic control and
the ability to evaluate a new mission plan
in terms of an escort mission were major
accomplishments for Demo 3. Despite the
increase in this subsystem’s functionality
and complexity. its runtime performance
improved by a factor of 20, putting Phase 2
real-time exccution well within reach. At
Demo 3. the Mission Planner executive
contained 150 rules for data management
and 0.6 megabytes of Lisp source code.

Tactics Planner. Throughthe global black-
board, the Tactics Planner communicated

Situation
Assessment |

System
Status

New route plans Mission

Manager

Tactical route plans Tactics
L Planner
]

T
o
i
s
i
i
+
i
T
i
'
'
'
:
s
'
v
v
I
'
'
1
I
'
'
'

Route Replanner:

Defensive planning
Mission support

Missile reaction
planning

Focus
attention

Aircraft reaction
planning

SAM site
reaction planning

Ignore)
Sensor planning
- Evade -
Weapons
Avoid planning
ch
Tactic Attack NP Communication | . Plan
selection _ : Specialization planning deconfliction
Detect
U Maneuver
Monito'r‘ ' planning
—~ | Countermeasure . -
H Degrade planning |

— 1 S — 1

Tactics-planning global blackboard

Tactics library
Sensor specialization
Pilot preferences

Missile evasion models

Mission Aircraft
Routes Missiles
Context SAM sites

!

Mission Support Tool

Mission Planner Situation Assessment

Plan status
Current flight status Parameterization
Prioritization
}
System Status Pilot-Vehicle Interface

Figure 6. The functional design of the Demo 3 Tactics Planner.

with each Pilot’s Associate premission and |
resident subsystem. It communicated with :

* the Mission Support Tool to provide
mission- and pilot-specific preferences,

* the Mission Planner for mission routes
and context,

« Situation Assessment for track object
assessment information,

* System Status for current flight status, and

* the Pilot-Vehicle Interface for plan sta-
tus and pilot-plan interaction.

Conceptually, the Tactics Planner com-
prised four functions: focus of attention,
tactic selection, specialization, and decon-
fliction (see Figure 6). The focus-of-
attention function allocated planning re-
sources to the most pressing needs. The
subsystem evaluated many alternatives to
support these high-priority activities and
made choices among multiple types of
offensive and defensive tactics. Once an
approach had been identified, a specializa-
tion function decomposed the tactic to its
lowest level. This lowest level focused on
the basic aircraft attributes that the Tactics
Planner could actually affect, such as the
use of sensors, weapons, comrmunications
equipment, and countermeasures. During
plan specialization, eachresource was eval-
uated with respect to its own aircraft and to
the wingman to provide an effective use of

all resources. Finally, the Tactics Planner
performed a plan deconfliction function
because, in the course of conducting many
types of planning, the subsystem generated
plans as solutions to one goal that could
conflict with plans generated as solutions
to other goals. This final process of plan
prioritization and deconfliction assured that
Pilot’s Associate would suggest achiev-
able plans.

To support the pilot, the Demo 3 Tactics
Planner reasoned in the following areas:

* Mission support planning (formation
planning, mission phase support).

* Communication support (radios, data
link, identifying friends and foes).

* Coordinated offensive and defensive
sensor planning (searching, monitoring,
weapons support).

* Surface-to-air missile site reasoning
(searching, monitoring, reaction planning).

* Enemy missile reasoning (searching,
monitoring, evasion planning).

* Countermeasures and expendables
planning.

* Air-to-air engagement planning (sup-
port when within visual range, evading
when beyond visual range, avoiding, de-
grading, ignoring, and attacking).

* Weapons support.

* Signature management (radar and
infrared).

Anarea of significant emphasis for Demo
3 development was the attack subsystem
for planning air-to-air engagement when
beyond visual range. Attack planning co-
ordinated the use of weapons, sensors,
maneuvers, and communications between
the lead and wingman Pilot’s Associate
aircraft and, to a lesser degree, among
additional cooperating aircraft. The use
and capabilities of realistic sensors, and
the use of weapons in attack planning,
required significant knowledge acquisition
to accurately support actual pilot informa-
tion-gathering techniques and the deploy-
ment, use, and support of advanced missile
systems and tactics.

We continued to express Tactics Plan-
ner knowledge in the form of Kadet rules
within the planning framework of the plan-
and-goal graph. The software contained
379 rules partitioned into 148 rule sets,
208 planning elements, and 219 functions.
The Demo 3 implementation required 1.6
mega-bytes of Lisp source code. While the
knowledge base occupied more than 1
megabyte, it was composed primarily of
rule macros that expanded to several times
their original size before they were com-
piled to object code. Developers estimat-
ed that the Demo 3 knowledge base con-
tained only 40 percent of the knowledge
required for a fully functional Phase 2
Tactics Planner.

26

IEEE EXPERT

Task ;
¢ control i
1 :
Aircraft System data | Diagnosi Corrective © " Merts checklist | Pilot-Vehicle
gnosis . :
bus ! t action ' Interface
' [i
: Physical | ;
| Input fauits mﬁ&mcfmns Output
' | database | i
| 1S J effected !
. ' T :
Query monitor [Limits | | Limits plan failure .
Planners 7 ! estimation| - Planners |
| e 3 i

Flgure 7. The functional design of the Demo 3 gystem Status subsystem.

System Status. As shown in Figure /,
this subsystem’s functional development
continued in aircraft diagnosis. limits esti-
mation, and corrective action, matching
the extensive architectural structure im-
plemented in Demo 2. This stage focused
primarily on diagnosis, including model-
based reasoning. built-in tests. and limit
checks. The diagnosis function monitored
the aircraft control and communications
bus to detect and isolate faults, and com-
municated these results to the subsystem’s
corrective-action and limit-estimation
functions. We focused on the engine sub-
system because detailed models of both
normal and abnormal engine behavior were
available for analysis.

The limit-estimation function report-
ed operating constraints to the planner
subsystems to ensure the development
of feasible plans. This function also
monitored these plans for continued fca-
sibility during execution. The Demo 3
subsystem provided the following classes
of information:

e General limits on maneuvers such as the
maxima foraltitude, turnrate. and climbangle.

» Caution and warning status for major
systems such as weapons, engines. and
electrical power.

« Status of consumables such as fuel,
flares. and missiles.

" JUNE 1991

¢ Specitic limits n the torm ot a tuel-
flow matrix. used by the Mission Planner
for setting the fuel budget and mission
profile.

* Specific limits on maneuvers to guide
the Tactics Planner in selecting feasible
maneuvers.

The corrective-action function generat-
cd options for action by the pilot or by the
Pilot-Vehicle Interface when emergencies
occurred because of equipment failure or
battle damage. Corrective actions for Demo
3 included procedures to correct a stuck
fuel valve. a generator failure, and a failurc
of the internal navigation system.

Because Demo 2 concentrated on build-
ing an architecture for a fully developed
System Status subsystem, this implemen-
tation did not change in Demo 3. It con-
tained 260 rules to manage control flow
and 1.1 megabytes of Lisp source code.
However. using decision trees to imple-
ment corrective action functionality did
not work: They could not handle multiple
faults or track procedure execution through
mission context changes as well as devel-
opers had expected. The explicit represen-
tation of possible combinations was 100
large to be practical. A future solution
might be to represent action elements that
can be assembled in appropriate combina-
tions at runtime. much in the way that the

lactics Planner created tactical plans. Sys-
tem Status development for Phase 2 will
focus on capabilities assessment and limit
estimation due to the information require-
ments of other Pilot’s Associate subsystems.

Real-time investigation efforts. As the
program progressed through Phase 1, we
added real-time analysis as a risk reduc-
tion measure. We examined real-time per-
formance bottlenccks and investigated and
demonstrated hardware and software ar-
chitectures or techniques to address these
bottlenecks. Our goal was to demonstrate
aclear, reachable path to achieve real-time
performance in Phase 2. while using the
computing capacity expected to be avail-
able in a generic advanced tactical fighter.

We identified five tasks to support reai-
time analysis:

(1) Produce an integrated development
environment to support the development
and testing of real-time models.

(2) Develop a runtime environment de-
signed for efficiency with few, if any,
user-interface or development features.

(3) Provide a simulation harness that
lets us estimate the behavior and perfor-
mance of application software running on
a target machine, given the host code on a
host machine. and given data comparing
target and host software performance.

27

(4) Develop analysis tools that let users
record, observe, and analyze the behavior
of application software.

(5) Demonstrate the development and
runtime environments,

For the integrated development environ-
ment, we used the ABE/RT real-time tool,
which is part of the Cimflex-Teknowledge
ABE/RT project sponsored by DARPA’s
Strategic Computing Program. ABE/RT
let us develop areal-time Pilot’s Associate
model, scheduling facilities, and a remote
execution capability. We also specified a
C-based runtime environment for the Sun
workstation to run the software produced
in the ABE/RT environment. The compo-
nents of the runtime environment were an
executive and a code generator. The exec-
utive provided necessary runtime support
for the real-time system, while the code
generator took as input a compiled ABE/
RT system and produced a set of C++ files
that defined all necessary system and ex-
ternal interactions. The user could then fill
in the skeletal C++ code for the particular
component.

The simulation harness and analysis tools
were crucial efforts in determining the per-
formance of Pilot’s Associate software for
real-time implementation. The basic simu-
lation harness let us track and modify the
clocks used by several system activities,
and it let us externally manipulate those
clocks to provide roughly synchronized
execution of processes running at different
natural rates. We extended this basic har-
ness to work on a host system distributed
across multiple Symbolics machines and
Sun workstations to allow a multimachine
systemsimulation. System designers could
then simulate software operation on differ-
ent architectures, model various processor
execution speeds and multiprocessor con-
figurations, and compare the resulting ex-
ecution characteristics. The analysis tools
consisted of logging facilities and a logic
analyzer. The logging facilities let the user
keep a record of the start and end of each
subsystem activation across multiple ma-
chines or within one machine. To view the
logs, a logic analyzer plotted time against
channels of events of various types. The
events, displayed in a strip chart format, let
us study detailed interactions between soft-
ware components. We also analyzed the
data statistically to determine the minimum,
mean, and maximum execution times of

various tasks and their relationship to previ-
ously specified deadlines.

We held two separate real-time demon-
strations in conjunction with Demo 3. The
first was a depth-first approach of actual
real-time performance. The objective was
to validate the simulation harness and sched-
uler by comparing predicted behavior with
actual measurements. We made the mea-
surements using real-time versions of the
Tactics Planner and Situation Assessment
subsystems, developed and running in the
ABE/RT environment. Dummy versions

THE AcTUAL
IMPLEMENTATION OF 4
SYSTEM OF THIS
COMPLEXITY UNCOVERS
MANY GAPS IN TECHNOLOGY
STILL TO BE ADDRESSED BY
THE RESEARCH COMMUNITY.

of other Pilot’s Associate tasks provided
realistic system loading. Data logging and
analysis features were also illustrated.

The second demonstration was a breadth-
first approach, containing the tools and
techniques necessary to predict and guar-
antee performance of the total system, and
showing the current computational model
of Pilot’s Associate. The objective of this
demonstration was to show the scalability
and usefulness of the development envi-
ronment under full load.

This real-time development and demon- :
stration work produced results in system
designandtask scheduling. Real-time anal-
ysis led to the recommendation that the |

baseline scheduling paradigm should be an
event-driven, asynchronous system of tasks
in which the clock interrupts are treated
like any other event. As a result of real-
time testing, we also decided to make as
many task-scheduling determinations as
possible off-line at design time. The off-
line determinations included task alloca-
tion to a specific processor, scheduling
modes of operation, task priority within a
mode, and computational resources assigned
to each active process in a mode. These

decisions, in conjunction with the develop-
mentenvironment, analysis tools, and dem-
onstrations, laid a convincing foundation
for a real-time Pilot’s Associate.

What worked

Several issues contributed to the project’s
success.

System development. The software de-
velopment environment available with
symbolic processors increased productivi-
ty significantly, and greatly enhanced soft-
ware prototyping, testing, and debugging.
Ada developers need tools of this type
before they can efficiently develop soft-
ware of this complexity.

Rapid prototyping proved an effective
methodology in developing Pilot’s Asso-
ciate functionality. Early prototypes pro-
vided working models for user evaluation
and a baseline for requirements develop-
ment for later prototypes. Major design
deficiencies could be identified early to
prevent major explorations of nonsensical
paths. The ability of the incremental proto-
types to demonstrate capabilities and inter-
im successes proved important in terms of
developer morale and user interest.

Involving the technical community. A
technology advisory board composed of
leading Alresearchers in industry and aca-
demia provided a positive influence on
system development. The board regularly
reviewed major elements of a subsystem or
system architecture. By defending devel-
oping ideas, we minimized risks and iden-
tified potential problems. The board also
helped us consider the balance between
success and risk.

Involving the user community. The
Operational Task Force advised system
developers in operational areas. Its partic-
ipants had substantial flight crew and engi-
neering backgrounds, and were selected
based on their tactical fighter experience,
understanding of Pilot’s Associate techni-
cal issues and approaches, and availability
for knowledge acquisition and product
evaluation throughout the program. The
group played a role in all phases of pro-
gram development: requirements definition,
design, development, and testing. This
group not only had a role in functional

28

|EEE EXPERT

development, but also advocated Pilot’s
Associate concepts to the operational world
and served as a valuable interface to the
rest of the user community. These indi-
viduals provided input to the program from
the user community and helped to ensure
the realism and user acceptance of Pilot’s
Associate. We cannot measure the value of
this group to realistic program goals and
user community acceptance.

t—IE TECHNOLOGY OF PILOT’S
Associate can be applied across a broad
spectrum of applications. In particular, real-
time, interactive process control applica-
tions are likely candidates. Pilot’s Associ-
ate technology is being applied to
helicopters, multicrew aircraft, submarines,
and even unmanned vehicles.

In accordance with the program goal to
provide a pull on the technology base, the
program often needed nonexistent tech-
nology to implement the design. Uncer-
tainty-reasoning approaches, pilot-
modeling techniques, and development
tools are areas that lacked sufficient re-
search to implement the Pilot’s Associate
vision. Verification and validation of
knowledge-based systems constitute an-
other area that is lacking techniques and is
quickly becoming a program issue. The
actual implementation of a system of this
complexity uncovers many gaps in tech-
nology still to be addressed by the research
community.

References

1. P. Bonissone, S. Gans, and K. Decker,
“RUM: A Layered Architecture for Rea-
soning with Uncertainty,” Proc. DARPA
Knowledge-Based Systems Workshop, The
American Institute of Aeronautics and As-
tronautics, Washington, D.C., 1987, pp.
123-131.

. KEE Software Development System — Core
Reference Manual, Intellicorp, Mountain
View, Calif., 1986.

. J. Lark et al., “Concepts, Methods, and
Languages for Building Timely Intelligent
Systems,” J. Real-Time Systems, Vol. 2,
No. 1/2, May 1990, pp. 127-148.

~

w

Further reading

C. Leavitt and D. Smith, “Integrated Dynamic
Planning in the Pilot’s Associate,” Proc. AIAA
Guidance, Navigation, and Control Conf., The

American Institute of Aeronautics and Astro-
nautics, Washington, D.C., 1989, pp. 327-331.

C. Lizza, “Pilot’s Associate: A Perspective on
Demonstration 2,” Proc. AIAA Computers in
Aerospace Conf., The American Institute of
Aeronautics and Astronautics, Washington, D.C.,
1989, pp. 386-394.

B. Pomeroy and R. Irving, “A Blackboard Ap-
proach for Diagnosis in Pilot’s Associate,” I[EEE
Expert, Vol. 5, No. 4, 1990, pp. 39-46.

B. Pomeroy, H. Spang, and M. Dansch, “Event-
Based Architecture for Diagnosis in Control-
Advanced Systems,” Artificial Intelligence in
Eng., Vol. 5, No. 4, 1990, pp. 174-181.

T. Whiffen, M. Broadwell, and D. Homoki,
“Intelligent Control of Situation Assessment
Systems,” unpublished paper presented at the
Fourth Annual Lockheed Al Symposium, Mar.
1989. Available from this article’s authors.

Sheila B. Banks is an
Air Force captain and
chief engineer for the
Pilot’s Associate Program
in the Joint Cockpit Pro-
grams Office of Wright
Laboratory, located at
the Wright-Patterson Air
Force Base. She directs
the design and develop-
ment of artificial-
intelligence software to provide information
management and decision support. Her other
research interests include knowledge acquisi-
tion, knowledge base support, and intelligent-
systems verification and validation. She received
a BS in geology from the University of Miami
and a BS in electrical engineering and an MS in
electrical and computer engineering from North
Carolina State University.

Carl S. Lizza is an Air
Force major and pro-
gram manager for the
Pilot’s Associate Pro-
gram in Wright Labora-
tory’s Joint Cockpit Pro-
grams Office. He directs
research into the appli-
cation of artificial intel-
ligence and advanced
computing technologies
to provide information management and deci-
sion support systems for future single-seat fight-
er aircraft. His research focuses on integrating
Al, conventional algorithms, parallel process-
ing, and symbolic computing into a real-time,
man-in-the-loop simulation environment. He
received his BS in computer and information
science from Ohio State University in 1977 and
his MS in computer science from Wright State
University in 1984.

Readers can reach the authors through Cap-
tain Sheila Banks, Dept. of the Air Force, Head-
quarters Aeronautical Systems Division, Wright-
Patterson Air Force Base, Ohio 45433-6553.

JUST-RELEASED
BOOKS

NEAREST NEIGHBOR (NN) NORMS:

NEAREST NEIGHBOR
PATTERN
CLASSIFICATION
TECHNIQUES
edited by Belur V. Dasarathy

This book covers the past four decades
of research in the area of nearest neighbor
(NN) techniques within the field of pat-
tern recognition, though its emphasis is on
the more recent studies. It contains results
and conclusions on nearly 140 studies
grouped into ten categories, each dealing
with a specific aspect of development in
NN pattern classification techniques.
This tutorial begins with a comprehensive
survey of the field that includes a detailed
bibliography of all the studies covered.
The text contains reprints of 52 studies
selected from the larger set of studies
explored in the survey chapter.

464 pp. 1991. Hardbound. ISBN 0-8186-8930-7.
Catalog # 1930 $65.00 / $45.00 Member

' call 1-800-CS-BOOKS |

rrom IEEE COMPUTER
SOCIETY PRESS

JUNE 1991

