ACE project

Adaptive Cockpit Environment

Research Report

Explorative data analysis of flight behaviour

with neural networks

Ivana Capkova
Michal Jaza
Karel Zimmerman
Patrick Ehlert

Knowledge Based Systems group
Delft University of Technology
The Netherlands

Vi
TU Delft

WP 6 & 10 Report
Reference: ACE/NLR/WP6 & 10
Internal reference: DKS02-04 / ACE 02

Date: September 2002

The ACE Consortium

NLR (Amsterdam, The Netherlands), Military Academy (Brno, Czech Republic), Delft University of Technology (Delft, The

Netherlands)
For the Dutch Ministry of Defence

Dutch Ministry of Defence

ACE

Page: 2

Reference: ACE/NLR/WP6 & 10

Date: September 2002

DOCUMENT IDENTIFICATION

Results of the Literature Study ACE/NLR/WP6 & 10
written by: reviewed by:
Name Organisation Name Organisation
L. Capkova, M. Juza, K. Delft University of | P.A.M. Ehlert and L.J.M. | Delft University
Zimmermann and P.A.M. Technology Rothkrantz of Technology
Ehlert
DOCUMENT CHANGES
Issue date Version Comments
September 2002 1.0
STATUS OF THE DOCUMENT
Internal
Restricted
Public X
WORKGROUP I. Capkova
KNOWLEDGE BASED SYSTEMS Ir. P.A.M. Ehlert
DELFT UNIVERSITY OF TECHNOLOGY M. Juza

Q.M. Mouthaan
Drs. Dr. L.J.M. Rothkrantz
Ir. B. Sletterink

K. Zimmermann

Contents

1 Introduction

1.1
1.2
1.3

Problem statement L
Project description oL
Neural networks e

2 Data Acquisition

2.1
2.2

FlightGear o
Getting the data L

3 Data Analysis

3.1
3.2
3.3

Introduction e
Basic view of the data
Differenced cross-correlation functions Lo

4 Assessment of the Activity/Action and Goal of the Pilot

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

Approach L
Data preprocessing L
4.2.1 Structure of the .act file
4.2.2 Structure of the .nrm file
4.2.3 Function of thr prepr program
Situations to recognize L. Lo
Elman network
Experiments oL
The neural network
Results. e e e e e e
Conclusions e e

5 Predictions of Flight Variables Using Neural Networks

5.1
5.2
5.3
5.4

5.5

Introduction L oL
Data preprocessingo e e
Learning conditions of our neural networks
Results. e
5.4.1 One variable one-step prediction from one variable known, small time window .
5.4.2 One variable one-step prediction from one variable, large time window
5.4.3 One variable one-step prediction from all variables
5.4.4 All variables one-step prediction from all variables
5.4.5 More steps ahead prediction of the pitch-deg variable
Concluding remarks Lo

6 Conclusions and Future Work

NSO SN

N o O

© © oo @@

14
14
14
14
15
15
15
16
16
17
17
18

19
19
20
20
20
20
20
21
21
22
22

26

Preface

This report is part of a project called Adaptive Cockpit Environment (ACE). In this report we describe
our attempts to use neural networks for situation recognition and prediction.

The first chapter gives a short introduction to the ACE project and the problem that it tries to
solve. The second chapter describes the data that was collected in order to perform our experiments.
Chapter 3 deals with how we analyzed the data and were able to detect different states. In chapter
4 we show the training of a neural network to assess the current situation. Chapter 5 deals with the
neural networks again, but now as a method to predict future situations. Finally in chapter 6 we give
some general conclusions and talk about future work.

Abstract

This report describes our investigation of flight simulator data and our approach of situation recogni-
tion and prediction using artificial neural networks. We use aircraft and pilot control parameters and
apply them to the problem of estimating the current situation. The parameters are fed to a recurrent
Elman neural network that returns the current state. A regular feedforward network is used to predict
future values of several parameters.

Chapter 1

Introduction

1.1 Problem statement

Due to the recent technological advances in aircraft performance and weapons capabilities, the time
available to a pilot in a military aircraft has reduced significantly. Also, the amount of information
available to a pilot and the complexity of the contents have increased. The pilot needs to assess a
situation and make decisions in a split of a second. For this situation awareness (SA) is important,
which means that the pilot needs to perceive and understand his situation and be able to predict the
outcome. Having a high level of SA is seen as one of the most critical aspects for achieving successful
performance in aviation [1]. Many human errors in aviation are caused by lack of SA [2]. An adaptive
pilot-plane interface can improve the flow of information between the pilot and the aircraft in such a
way that the pilot’s SA is improved and his mental workload is reduced. Such an interface can take
advantage of a human’s capacity for parallel processing via multiple sensory modalities such as vision,
sound and feeling. As a result the survivability of the pilot and plane and the effectiveness of the
mission will be improved.

1.2 Project description

The goal of the ACE project is ”the definition and evaluation of a prototype adaptable interface
technique to identify the specific automation requirements and practical utility of this innovation in
a military cockpit” [3]. The idea is that certain features in the pilot-plane interface can be adapted
or automated depending on the workload and status of the fighter pilot. Physiological measurements
are taken to determine this workload and information from the aircraft system is used to determine
the current situation. The high-level information supplied by the workload and situation assessment
modules is then used by one or more agents (logical component) to determine the content, format and
modality of the display in the cockpit.

In order for the ACE system to know where, when and how to perform adaptations the current
situation is very imporant. This report deals with situation recognition within the aircraft using
available aircraft data. This data needs to be abstracted to a higher-level goal (see fig. 1.1). Based on
the goal the ACE system will determine in which area to adapt. The two logical methods to determine
this context information are expert systems and neural networks. In this report we will look at the
neural networks method.

1.3 Neural networks

At regular intervals we have recorded the values of certain pilot-control parameters (e.g. throttle,
brake, elevator) and aircraft parameters (e.g. pitch-deg, roll-deg, acceleration). The goal
of this research is to give an interpretation of these data, what is the ” planned” action of the pilot, what

CHAPTER 1. INTRODUCTION 5

Goal (taking off)
S
State (going up, ...) g
z
5+
X k]
1 —_
: 2
Samples : 2
Xn
| | | | | | | | | | | | | | | | |
I I I I I I I I I I I I I I I I I time

Figure 1.1: Illustration of levels of abstraction of the problem

is his goal. As a proof of concept we limit ourselves to the following set of actions: going up, regular
flight, turning right, turning left, going down, standing (on the ground), taxiing.
We present two different approaches:

e estimation of the pilot’s goal from the control and aircraft parameters (with the use of recurrent
neural networks),

e prediction of the values of these parameters from history (with the use of feed-forward neural
networks),

Chapter 2

Data Acquisition

To train any neural network, data is needed. In our case we needed realistic flight data from an aircraft.
Currently, there are many advanced flight simulator software tools available. However, for the purpose
described in the chapter 1, we need to manipulate input data and adapt the cockpit environment. For
this reason we need the source of the software (also for the possibility of logging variables). Commercial
available tools do not provide the source so we decided to use the free open-source FlightGear flight
simulator [4].

2.1 FlightGear

The FlightGear flight simulator project is an open-source, multi-platform, cooperative flight simulator
development project. The goal of the FlightGear project is to create a sophisticated flight simulator
framework for use in research or academic environments, for the development and pursuit of other
interesting flight simulation ideas, and as an end-user application. This framework can be expanded
and improved upon by anyone interested in contributing. It is being developed through the gracious
contributions of source code and spare time by many talented people from around the globe. The
idea for FlightGear was born out of dissatisfaction with current commercial PC flight simulators. A
big problem with these simulators is their proprietariness and lack of extensibility. There are so many
people across the world with great ideas for enhancing the currently available simulators who have
the ability to write code, and who have a desire to learn and contribute. The Flight Gear project is
striving to fill these gaps [4].
Flightgear allows us to log and alter various aircraft properties and controls used by the pilot.

Figure 2.1: View from the cockpit in FlightGear

CHAPTER 2. DATA ACQUISITION 7

2.2 Getting the data

Settings for logging must be specified in the preferences.xml file in a <logging> section. The
sample rate must also be set in this section. We used a sampling interval of 1 sec. While flying a
session with the flight simulator, the logged variables are written to a text file (name is specified in
preferences.xml file).

Datasets were created in two ways: using the autopilot feature or flying manually. We used the
autopilot because of its smoother courses of variables. Non-autopilot flights were done only by one
person because it is not so easy to handle flying. The simulator is fairly realistic and it took us quite
some time to learn to fly since none of us is a skilled pilot. We took many flights, about 40 with
average length 15 minutes. We decided to use only good and successful flights (without crash and
seeming to be similar to real pilot’s flight).

A general problem with the datasets is that we do not know the right flying behaviour (as profes-
sional pilot do). At the moment, it makes no sense to generate rules (induced by these data) and use
an expert system approach, since we do not have enough knowledge about the right flying behaviour.
That is the reason we use neural networks to analyse this data. The results are of course dependent
of training data, but the methodology is not, so we can use neural networks as a proof of concept.

Chapter 3

Data Analysis

3.1 Introduction

In this chapter we will discuss our data analysis of the flight data. It can be expected that some
variables are correlated. We can also expect that these correlations are action-dependent. The data
processed in this section are all acquired with the use of the autopilot feature, and sometimes they are
also normalized or exponentially smoothed.

Some properties of the analyzed data we got by PCA analysis:

e cigenvalues of the covariation matrix of the data:

0.02028
0.03427
0.08686
0.34380

A=

e cigenvectors of the covariation matrix of the data:

0.038014 —0.085563 0.216901 0.971693
v = 0.027285 Uy = 0.944142 Vg = —0.293391 vy = 0.147560
—0.108990 |’ —0.313086 |’ —0.925477 |’ 0.183279
0.992941 0.057034 —0.101827 —0.021138

The coordinates of each data point in the PCA transformation (pi,p2) are computed as

p1 = T4 (3.1)
p2 = x-us, (3.2)

where z is the set of (normalized pitch-deg, throttle, normalized acceleration, normalized

roll-deg); v4 and v3 correspond to the largest eigenvalues. We can see that the pitch-deg param-
eter has a large impact on pj, which is influenced a little also by the throttle and acceleration
parameters. The acceleration parameter has a large impact on ps, which is also influenced by the
throttle and pitch-deg parameters. The impact of the roll-deg parameter is rather small and
that is the reason why turning left and turning right cannot be accurately recognized from the
PCA figure in fig. 3.2. As expected these variables are more or less independent.

CHAPTER 3. DATA ANALYSIS 9

4 T T T T T
A B
3 e N
2 i
1 l RS i
0 L//1 i
_1 — —
. . A - taxiing
ok normalized value of pitch—deg B - going up _
— throttle C - straight regular flight
-3 D - regular flight turning left -
E - regular flight turning righ
-4 F - going down -
-5 l l l l l
0 200 400 600 800 1000 1200

time [s]

Figure 3.1: Time graph of selected flight variables during a simple flight (using the autopilot feature).

3.2 Basic view of the data

We started with a selection of four logged variables that are shown below. The number at the beginning
of the line stands for the normalization factor for each variable:

7 orientation/pitch-deg
1 throttle

1 accelerations/nlf

50 orientation/roll-deg

These normalization factors were determined just by looking at the data; we did not make any
precise analysis (reason for this will be described later). In fig. 3.1 the time graph of the flight data
is shown. Fig. 3.2 shows the PCA and other projections of data acquired using the autopilot feature
that was used to detect separate clusters. Fig. 3.3 shows the projection of the variables’ tracks during
a simple flight. It also shows that is is possible to follow the stages of a flight by following the tracks
made by the logged variables. The left part of the figure stands for approximately the first half of
the flight and the right one for the rest of the flight. For this analysis, the data was exponentially
smoothed, o = 0.03.

The variable roll-deg obviously lets us recognize the states of turning left and turning
right, which can be seen very well on the projection of pitch-deg — roll-deg on fig. 3.2. The
variable pitch-deg lets us recognize the states of going up and going down, but this sometimes can
be a problem of noise, as can also be seen in the figures. The variables throttle and acceleration
are more complex, but they are able to recognize the rest of the states, as can be seen in the figure.

In the figures 3.2 and 3.3 it can be seen that there can be a problem with data classification: the
clusters lay over one another. This can be caused by the data logging or maybe it is just a problem
of a complicated interference between variables.

3.3 Differenced cross-correlation functions

In this section we look at some relations among the various variables that we logged. We consider
the differenced cross-correlation to be more important than regular cross-correlation because we are

CHAPTER 3. DATA ANALYSIS 10

PCA projection pitch-deg X roll-deg
05 T T T T T T
02 ‘ ‘ 04 turning right
of © B
& taxiing -g 03
-02 ® 4 =
& S 02
© B~
04 T goa
§-06 _ X . | %
’ going down S 0
-08 - b E—O.l
B
At L 4 E-02
ot £ going up e
12k 8+ /) 4 -03
al %é{o/o/regular flight | 04
_16 | | | T & Q\ | | | -0.5
-5 -4 -3 -2 -1 0 1 2 3 4
P1 normalized value of pitch-deg
pitch-deg X acceleration pitch-deg X throttle
18 o T 1 T OM— AL T
s 16 ¢ - P
® 141 ¢ B =
_g 08 regular flight,
§ 12r] ° taking off
E 1r g 06 N
S 08 - B S o 9, b o ©
S 5 e
§ 06 7 % 04~ @O @10 i
T 04 - > going down (before landing)
£
S o2 B 02 R
or doing nothing 7
-0.2 1 1 1 0 L 4 L L @ % 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 -5 -4 -3 -2 -1 1 2 3 4
normalized value of pitch-deg normalized value of pitch-deg
doing nothing ¢
taxiing ¢

goingdown ¢

Figure 3.2: Various projections of flight data

mainly interested in trends. Also the course of regular cross-correlation is much worse (we did not put
a figure here); it does not have peaks at all, going down slowly with the lag. These relations helped
us to figure out what variables to log and what not to. Figures 3.4 and 3.5 show the cross-correlation
functions of the variables. These cross-correlation functions are made of non-normalized data (whole
flight). Cross-correlation can be computed by

> (2(i) — E(2))(y(i — d) — B(y)) (3.3)

var(z)var(y)

cor(z,y,d) =

where z and y are (differenced in our case) time courses of selected variables and d is the lag which
changes.

In fig. 3.4 you can see that acceleration with elevator, acceleration with pitch-deg etc.
are strongly correlated, especially when compared to fig 3.5 which shows the weakly correlated vari-
ables of throttle with turn-rate and pitch-deg with turn-rate. From cross-correlation func-
tion courses (fig. 3.4) dependence among most important variables can be seen. For example, the
acceleration / elevator cross-correlation function has a maximum in the lag equal to zero, which
means that the acceleration and elevator parameters are correlated and the dependency is not
delayed. On the other hand, the roll-deg / turn-rate cross-correlation function has in the lag
equal to minus one. They are dependent and the turn-rate parameter is one second ”delayed”
in comparison with roll-deg parameter). From cross-correlation functions courses (fig. 3.5) it is
clear that there is no important dependency between the throttle and turnrate or pitch-deg
and turn-rate parameters. Unimportant dependecy mean that maximums are under the defined
confidence limits.

CHAPTER 3. DATA ANALYSIS

first half of the flight

second half of the flight

10 : , . 15
standing on the ground ——
t left whil g |
urning left wnile going up |
D 8 J ijt'mw‘gl u{) B 8110
1|3 °
= L
S 6 7 B s5¢
S 5
S 4 - o
g g or
Ber -7
3 z°f
E ol ? B £
e x - S
2 - // or
_4 1 1 1 L L L L L -15

-5 -4 -3 -2 -1 0 1 2 3

going down —%—
e

) axung
standing on the ground —o—

-3 -2 -1 0 1 2 3 4 5 6 -6
normalized value of pitch—-deg
1.1 11
1r B L
09 - |
o8k } i 09
& =
507 1 Sosf
L 7 0.8
: 5
8 06 - N 3
07
g 05 . B &
standing on the ground —e—
- { ——] -
04 turning left while going up —=<— 0.6
going up —o—
03 |
05
02 |
01 | | | | | 1 04
-3 0 1 2 3 4 5 6 -6

normalized value of pitch-deg

Figure 3.3: Courses

of parameters

-5 -4 -3 -2 -1 0 1 2 3
normalized value of pitch-deg

of the flight — smoothed data

11

CHAPTER 3. DATA ANALYSIS

CCF

CCF

CCF

ACCELERA with ELEVATOR

Mlcoescicien:

Lag Number

Transforms: difference (1)

AILERONS with ELEVATOR

Mlcoc:cicicnt

=

o

.51

-0 T T T T T T T T T T
0 8 6 4 2 0 2 4 6 8 10
Lag Number
Transforms: difference (1)
RUDDER with TURNRATE

0

.51

o-

Mlcoescicien:

Lag Number

Transforms: difference (1)

Confidence Limits

Confidence Limits

Confidence Limits

CCF

CCF

CCF

1.

1.

ACCELERA with PITCHDEG

a

Lag Number

Transforms: difference (1)

ROLLDEG with TURNRATE

Lag Number

Transforms: difference (1)

VELOCITY with PITCHDEG

a

Lag Number

Transforms: difference (1)

Confidence Limit:

Blcoessiciont

Confidence Limit:

-CoefflcienL

Confidence Limit:

Blcoessiciont

Figure 3.4: Differenced cross-correlation functions of related variables

12

CHAPTER 3. DATA ANALYSIS

THROTTLE with TURNRATE

CCF

Lag Number

Transforms: difference (1)

Confidence Limits

Mlcoc:cicicnt

CCF

PITCHDEG with TURNRATE

-0l T - - - T . . T - . -CcefflcienL

Lag Number

Transforms: difference (1)

Figure 3.5: Differenced cross-corelations functions of unrelated variables

Confidence Limit:

13

Chapter 4

Assessment of the Activity/Action and
Goal of the Pilot

4.1 Approach

Our goal is to explore if it is possible to use artificial neural networks (ANNs) for the assessment of
action/situation. We decided to discriminate only among seven basic situations (described below).
We used a (partly) recurrent (Elman) network because a time context exists among situations. We
generated the data using the FlightGear flight simulator that was dicussed earlier. For handling ANNs
we used the Stutgart Neural Network Simulator (SNNS), version 4.2 (See [5]).

For training our neural network we of course need data that is already classified. To be able to
attribute the desired network output to the input data, we manually logged the pilot’s actions over
time. A problem with logging data was that although we set the sample rate to 1 sec , the variables
were logged over periods of about 1.2 sec by the simulator. Handling of this problem will be described
later.

4.2 Data preprocessing

The structure of the data file acquired from the Flightgear simulator (.log file) is different from the
pattern file (.pat file) that is read by SNNS. Therefore, we created a program for data conversion
and preprocessing. The program also places the desired outputs of the network into the .pat file.
For every flight we created another file, named x.act (where x stands for the name of the logfile) to
store the codes and durations of various epochs of our flight. Our program then writes these patterns
to the .pat file. The structure of the .act file will be described below.

Training of a neural network can sometimes be a problem if the input variables are from different
ranges, so our program also provides simple normalization. This means you can divide a variable by
any desired float number. If normalization is wanted then the current directory must include the file
x.nrm, where x stands for the name of the logfile without extension again. The structure of this file
will also be described below.

4.2.1 Structure of the .act file

The sign '%’ stands for a comment continuing till the end of the line. The first number in the file
contains the total time of the flight in seconds or minutes. This approach solves the problem of the
sample rate as described above by computing the ratio of the time of this action to the total time.
The second number in the file is the number of outputs, which is recommended to be the same as the
number of recognized actions. Next follows the desired outputs of the neural network for each action
and behind the multicollon " ;" there is the duration of the action. It is important that the sum of all
the particular durations equals the total time written in the first row of the file. There is no rule about

14

CHAPTER 4. ASSESSMENT OF THE ACTIVITY/ACTION AND GOAL OF THE PILOT 15

repetition of each action but if these data do not correspond to the .log file, the network would be
trained badly. An example of an .act file is the following:

%total time

21

Jnumber of outputs
7

%action; time of action
0000O0O0T1;1

0;5
0;10
0

1
0
0 ;5

= = O
= O O
o O O
o O O
o O O

4.2.2 Structure of the .nrm file

The first line stands for the number of variables which should be normalized. The other lines contain
the normalization factor first and then the name of the variable. This name must correspond to that
in the .log file. An example of an .nrm file is the following:

7

40 velocities/vertical-speed-fps
3 accelerations/nlf

30 orientation/pitch-deg

50 orientation/roll-deg

100 steam/air-speed-kt

2 steam/turn-rate

0.2 controls/elevator-trim

4.2.3 Function of thr prepr program

The purpose of this program is to automatically create the .pat file suitable to be loaded to the SNNS
program. When putting

./prepr data

on the command line, the program will take the files data.log, data.act and data.nrm (if it is
available) and create a file data.pat to be loaded as a pattern file to SNNS.

4.3 Situations to recognize

We decided to recognize only the following situations (example of the coding is in the brackets):

going up (1 000 0 0 0)

regular flight (0 1 0 0 0 0 0)

turning right (0 0 1 0 0 0 0)

turning left (0 0 0 1 0 0 0)

going down (0 0 0 0 1 0 0)

standing (on the ground) (0 0 0 0 0 1 0)
taxiing (0 0 0 0 0 0 1)

There are also some possible combinations of these basic actions, e.g. when you fly level (not going
up or down) and turn left at the same time, or turning while going up. The coding was chosen because
we thought that it would be good for the neural network to have as many different states as possible
and recognizing the values of 0 and 1 is much simpler than recognizing continuous values.

CHAPTER 4. ASSESSMENT OF THE ACTIVITY/ACTION AND GOAL OF THE PILOT 16

4.4 Elman network

The Elman network is a partially recurrent neural network. The connections are mainly feed-forward
but also include a set of carefully chosen feedback connections that let the network remember cues from
the recent past. The input layer is divided into two parts: the actual input units and the context units
that hold a copy of the activations of the hidden units from the previous time step. As the feedback
connections are fixed, backpropagation can be used for training of the feed-forward connections [7].
An example of an Elman network with one hidden layer is in fig. 4.1.

Inputnodes | Contextnodes |

Figure 4.1: Simple Elman network — 4 input units, 1 hidden layer with 4 units, 4 output units, 4
context units

4.5 Experiments

Several experiments were done to find a good network structure and settings, as well as the best
variables to use. Below we describe some of our findings.

Experiment 1:

In our first experiment we tried to create some data and load them into a neural network. We
logged 17 variables, did not normalize them at all, had 5 situations to recognize (first 5 in the list) so
we also needed just 5 output variables. We tried to train both Elman and Jordan networks, the latter
seeming more logical, the former having slightly better results. After that we decided to use only the
Elman network with output context.

Our Elman neural network had 2 hidden layers with 30 units each, and training took a very long
time. We initialized the network with 0 at the self-recurrent links and 1 on the recurrent links from
hidden and output layers.

Experiment 2:

In experiment 2 we decided to normalize our data. One approach is to compute a mean and
variance of each data set and normalize them so they have zero mean and standard deviation equal
to 1. We decided not to use this approach because we supposed that a recognizer should be run in
real-time in the future. It is also unusable to normalize each data set to different mean and different
variance.

CHAPTER 4. ASSESSMENT OF THE ACTIVITY/ACTION AND GOAL OF THE PILOT 17

With these data, we tried to train networks with various numbers of layers, various numbers of
units in each layer, with and without output context. From this experiment we concluded that that
output context seems to be important as well as the number of layers. For example, a network with
just one hidden layer with five units and with output context had much better performance than the
network with one hidden layer with five units and without output context.

Experiment 3:

After the data analysis with the help of PCA (Principal Component Analysis) we decided to log
just 3 variables: pitch-deg, roll-deg and throttle. We tried using vertical-speed instead of
pitch-deg, but pitch-deg is much more smoothed. The problem of PCA is that it emphasizes the
variables with the largest variance, not considering the importance of the changes.

Experiment 4:

We still had problems the with throttle variable. Every flight used different levels of throttle,
so we added a more objective variable — acceleration. For better precision in the recognition of
standing and taxiing we left the throttle variable in our data sets.

Experiment 5:

Having problems about the quality of training data (which is much more important than the quality
of testing data), we decided to use the autopilot feature in the FlightGear simulator. The neural
network trained with these data provided very good results, even on the data from non-autopilot
flights.

4.6 The neural network

We decided to use an Elman neural network with 2 hidden layers, 10 units each and output context.
Our network has 4 units in the input layer, 7 units in the output layer and each context layer has the
same number of units as the corresponding hidden or output layers.

For initialization, we used the built-in JE_Weights function with parameters o = —1, 3 = 1, where
< «, 3 > is the range at which the feedforward lines will be (randomly) initialized, A = 0, which are
the weights of the self-recurrent links of the context neurons, v = 1, which are the weights of the links
from hidden (and output) layers to the context units (these weights did not change during learning)
and 1 = 0 which is the initialization value of context units. For more details, see [5]. For learning, we
used regular back-propagation, with the step width n = 0.2. The error on which learning shall stop
dmaz = 0.1 and = = 0.8, which is the coefficient of mixing real and teaching outputs during training
(this means that the real output has larger impact). For updating, we used the regular JE_Order
function.

4.7 Results

Figure 4.2 shows the training and testing error of the network, with both training and testing data
acquired using the autopilot. The data sets for training and testing were different.

Figure 4.7 shows the training and testing error of the network, trained on the data acquired with
the autopilot and tested on data from a simple manual flight. The testing error is higher in the be-
ginning, but lower at the end. For illustration, we sum up some of the badly classified patterns (we
consider the significantly highest value of all the outputs):

serious mistakes — 1.4 %, e.g. turning left when the pilot did not turn left at all etc.
less important mistakes — delayed performance, mean delay 17.0 patterns, standard deviation
7.6 patterns.

CHAPTER 4. ASSESSMENT OF THE ACTIVITY/ACTION AND GOAL OF THE PILOT 18

o]
76 I\
ol II"

- %

4o N,

. .,
e S

-8 e

= o o - o = B = N~ . =
ry

Figure 4.2: Training (lower) and testing (upper) mean square error (on different data)

We attribute these mistakes mostly to unprecise logging and some of it also to the recurrency of
the network.

LB = B~ B - B = S = B = B~ . =E
ka
o

- - |
it T T T T T
=]] 1z -k 200 eS| 283 258 qE3

Figure 4.3: Training (higher at the end) and testing mean square error (simple manual flight)

4.8 Conclusions

It is possible to recognize the state of the aircraft (e.g. going up, going down) from the variables we
logged with the use of an recurrent ANN. The problem of recognizing the goal of the pilot is more
philosophical — it is usually correlated with the state of the aircraft but not necessarily. Nevertheless,
when recognizing the state of the aircraft we needed to put a priori information into our classifier but
we still think it was neccessary. Training of the neural networks was complicated and took a long
time. We suppose that some logging sessions were less ”useful” than others. Also the normalization
factors are given a priori instead of calculated, but they are used just for shifting the input data into
a reasonable range.

Chapter 5

Predictions of Flight Variables Using
Neural Networks

5.1 Introduction

In this chapter we will discuss our approach to predict future values of the logged parameters. For
this, we need to know the previous values of these parameters. We decided to use ANNs once more,
just feedforward ones this time. However, many variations are possible:

e the size of the history time window, which means how many past values will be considered,
can be chosen (see also 5.1);

e the size of the future time window, which means how many future values of a single variable
should be predicted, can be chosen;

e what input flight parameters are to be used, which means from which flight parameters the
predictions should be made;

e what output flight parameters are to be used, which means from which flight parameters the
predictions should be made.

History Future

Prediction

I
>§. X)s X X discretetime

k+l k+2

Time window

Figure 5.1: Time window that is used to predict future values

We have used a regular feedforward network with standard back-propagation learning method.
Parameters of learning will be mentioned later. For training the network we used the same data as
shown in fig. 3.1. For testing, we used other data, but all generated with the use of the autopilot
feature.

19

CHAPTER 5. PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS 20

5.2 Data preprocessing

For data preprocessing, we devised a program similar to the one used for the approach described in
the last section. This new program needs a .nrm file and of course also the .log data file as well as
several additional parameters. The first parameter is the name of the files (without extension), the
second parameter is a binary determination of the input variables (from which the prediction is being
made), the third parameter is a binary determination of the output variables (prediction of which
variables), the fourth parameter is the input window size (i.e. how many input values of one variable
are to be applied to the neural network), and the fifth parameter is the output window size (i.e. how
many values of the output variables are to be predicted). For example:

./preprnew data 01100 01000 10 5

Here the program will take the file data.log and data.nrm (if desired) and puts the results into
the data.patfile. The input variables of the network will be 10 past values of the second and third
variable logged in the .log file (note that time is always the first variable logged in the .log file)
and teaching outputs will be 5 future values of the second variables.

5.3 Learning conditions of our neural networks

We trained the network on a training set which is about 15 minutes long (see fig.3.1). The sampling rate
was set to 1 sec, which means slightly more that 1000 patterns. We planned several experiments with
various sizes of time window. We used a regular feed-forward network with standard back-propagation
and step size 0.2 (mostly). In most cases learning was done 1000 epochs and no overtraining appeared.
Weights were initialized randomly in all cases, in the range of (—1,+1). Both training and testing
data were normalized, with the same factors used, in all cases. The output layer and the last hidden
layer used a pure linear activation function to provide the continuous outputs. A sigmoidal function
was used in all other cases.

5.4 Results

Below we have summarized the results from several experiments.

5.4.1 One variable one-step prediction from one variable known, small time win-
dow

Network description: 2 hidden layers, 5 units each, time window size 5.
Pitch-deg: MSE 0.01719 training error, 0.01026 testing error (more details in fig. 5.2).
Acceleration: MSE 0.02847 training error, 0.00564 testing error (more details in fig. 5.3).

Roll-deg: MSE 0.00115 training error, 0.00029 testing error (more details on fig. 5.4).

5.4.2 One variable one-step prediction from one variable, large time window

Network description: 2 hidden layers, 20 units each, time window size 20.
Pitch-deg: MSE 0.16532 training error, 0.12102 testing error (more details in fig. 5.5).
Acceleration: MSE 0.00454 training error, 0.00995 testing error (more details in fig. 5.6).

Roll-deg: MSE 0.00538 training error, 0.00791 testing error (more details in fig. 5.7).

CHAPTER 5. PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS

Training data

P O kB N W A

normalized value of pitch-deg

real cburse
predicted

urse

Testing data

normalized value of pitch—-deg
& o .
(%] o (%2 - (2]

|
LN

T
_real course
predicted course

|
=
&

21

0 200 600 800 1000 1200 0 100 200 300 400 500 600
time[s] timels
Figure 5.2: Prediction of the pitch-deg variable, time window size 5
Training data Testing data
4 T T T 2 T T T T
real churse _real course

3k predicted qourse 15 predicted course i
c o
.% 2 4 % 1 i
o o
?(g t] g 05 -
w— 0 - -
T 1 3
> >-05 7
3 1 B
N N,
= | N i
= 4 2-15 hl

-5 1 1 1 1 L -2 1 1 1 1 1

0 200 400 600 800 1000 1200 0 100 200 300 400 500 600
time[sl timelsl

Figure 5.3: Prediction of the acceleration variable, time window size 5

5.4.3 One variable one-step prediction from all variables

Network description: 2 hidden layers, 10 units in the first and 5 units in the second layer, time
window size 5. All 4 logged variables were used for prediction, i.e. 20 input units.

Pitch-deg: MSE 0.00329 training error, 0.11834 testing error (more details in fig. 5.8).
(Step size learning parameter decreased to 0.1 for technical problems.)

Acceleration: MSE 0.00170 training error, 0.02623 testing error (more details in fig. 5.9).

Roll-deg: MSE 0.00047 training error, 0.00760 testing error (more details in fig. 5.10).

5.4.4 All variables one-step prediction from all variables

Network description: 2 hidden layers, 10 units each, time window size 5. All 4 variables used for
prediction, i.e. 20 input units and 4 output units. Step size 0.1, 1500 epochs (technical problems
occured with divergence of the network)

MSE: 0.01334 training error, 0.09575 testing error (more details in figure 5.11).

5.4.5 More steps ahead prediction of the pitch-deg variable

Network description: 2 hidden layers, 10 units in the first layer and 8 units the second layer, 10
units in the input layer, 5 units in the output layer, i.e. there are 10 past values of the variable on
the input layer and 5 future values of the variables are the teaching output of the network. Particular

CHAPTER 5. PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS 22

Training data Testing data

05 . | | ; 05

T T
_real course
predicted course

normalized value of roll-deg
Il
normalized value of roll-deg
o

200 400 600 800 1000 1200) 100 200 300 400 500 600
time[sl time[sl

Figure 5.4: Prediction of the roll-deg variable, time window size 5

Training data Testing data

~

T
real course
predicted course

T
real course
predicted course

w
T
L
=
o
T
L

N
pitch-deg
T
L

-

o
=4
3}

T
I

|
[iN

o
T
I

0
N

normalized value of pitch-deg
S
(4]
T
Il

normalized value of

|
w

|
IS
|
iN
T
I

1 1 1
0 200 400 600 800 1000 1200 100 200 300 400 500 600
time[sl timelsl

!
a
|
=
o
o

Figure 5.5: Prediction of the pitch-deg variable, time window size 20

prediction performance is shown in figures 5.12, 5.13, 5.14.

MSE: 0.19639 training error, 0.62649 testing error
(learning parameters: 7000 epochs, 0.05 step size)

5.5 Concluding remarks

The one variable one-step prediction with the history time window size of 5 seems to be fairly successful,
except for bad levels of the signal. Also, the timing is right. We consider these results to be quite
good. Large history time window has a poor performance, which can be attributed to the bigger
complexity of the neural network and more difficult learning. We think that the network has a
problem recognizing the ”importance” of each of the data values. One-step prediction of one variable
from all variables is somewhat disappointing, because we supposed that more information would result
in better predictions. The problem of the poor performance of one variable, one step from just one
variable can be attributed to the complexity of the network. Perhaps longer learning times or using
more data will improve performance. The same applies to the prediction of all variables from all
variables. More-step prediction performance corresponds to our expectations. The prediction error is
getting bigger with the number of steps predicted ahead. A problem in this case is the great difference
between performance of training and testing data, but this can probably be reduced by using more
training data.

CHAPTER 5.

PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS

Training data

18 T T T T 14 T u T
edigt?é ﬁ;g E— [glgi?eésgourse —
16 pr] | |
. | g® f\
£t i | o Y Ve W Nl i
B12r i L b 2 i '
u— o
§ 1 - n_n (L m il E 4
Tos 4 = N
-8 >
N 06 B '§ i
Q 5 -
S o2 B 2
. |]
-02 1 1 1 1 1 -02 L 1 1 1 1
0 200 400 600 800 1000 1200 100 200 300 400 500 600
timelsl timelsl
Figure 5.6: Prediction of the acceleration variable, time window size 20
Training data Testing data
0.5 T T T T 0.5 T T T T
rea course real course ——
04 - predicted courseq 04 predicted course —— _|
Po3f R 8 s]
S 1
z 02f b B 02 R
5 01f b B 0.1 7
5 o 3
20 4 T o i
>
Bo1lr - g -0.1 -
N
é—o.z r b ? -02 B
o
S-03 b S -03 B
-04 - - -0.4 4
-05 1 1 1 1 1 -05 1 1 1 1 1
~o0 200 400 600 800 1000 1200 >0 100 200 300 400 500 600
timelsl timelsl
Figure 5.7: Prediction of the roll-deg variable, time window size 20
Training data Testing data
4 ! ! ! 2 ‘ ‘ ‘ real co‘urse —
15+ predicted course —— _|
.
T2 8 g !)
g L os .
51 b 2
3 : o f
0 R 5
§ 2 05 4
.8—1] g -1 B
= £-1s b
23 7 § -2 R
=
-4 7 -25 ,
-5 1 1 1 1 1 -3 1 1 1 1 1
0 200 400 600 800 1000 1200 0 100 200 300 400 500 600
timelsl timelsl
Figure 5.8: Prediction of the pitch-deg variable from all variables, time window size 5
Training data Testing data
18 T T ed»‘r% course | 16 ! ! feal course —_—
L redicted course — edicted —
C1.6 p % 14 - predicted course i
=] =
Fl4 4 T 12 i
5 5"
_81'2 B B 1 4
g &
1 * 4 0.8 7
5 o
Lo B S 06 f
] g
06 8 04 8
T§04 . z g
T T 02
E E
502 g 5 o 8
0 g -02 8
-0.2 L L L L L 04 L I I I I

Figure 5.9: Prediction of the acceleration variable from all variables, time window size 5

400 600 800 1000 1200
timelsl

Testing data

o

100

timelsl

600

23

CHAPTER 5. PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS

o o o o o
kN W O

normalized value of roll-deg
o

Training data

o °o 9o o o
o Rk N w » o

normalized value of roll-deg

Testing data

real course
predicted course ——

timelsl

600

Figure 5.10: Prediction of the roll-deg variable from all variables, time window size 5

normalized values

Testing data

prédicled pi tchfdeg - itche
predicted trottle ——— redreglltgﬁro[tjﬁge
predicted acceleration ———
A predicted roll-deg -~~~ 7

time[s]

Figure 5.11: Prediction of all variables from all variables, time window size 5

pitch—deg
] =
(5] - (5]

o

normalized value of

600

Testing data

T T
real course ——
predicted course ——

. 300
time[s]

Figure 5.12: 1-step ahead prediction performance (pitch-deg)

1200

-0.1

-0.2

-0.3

-0.4

~05 1 1 1 1 1

0 200 400 600 800 1000
timelsl
[raining data

4

3k i

Py i
g i
= 1
> !

0 =~ —
Tt -
5 red pitch-deg pred. pitch-deg I
cor real throttle pred. throttle —

3L pred .roll-deg - N
4+ E
-5 I I I I I
0 200 400 .600 800 1000 1200
time[s]
[raining data
4 T T T T
real course ——
3k predicted gourse —— |
g2 |
s
B 1 T
B
o0 B
=3
Sa .
T
N_o —
g
53 7
c
—4 4
5 1 1 1 1 1
0 200 400 600 800 1000
timelsl
Training data
4 T T
real course ———
3l predicted gourse —— |
g 1
&]
£ 1
B
o 0 7
S
Sa .
B
N_» |
g
5-3 A
=4

4 4

5 L L L L L

0 200 400 600 800 1000
timelsl

=
o

pitch—-deg
=

0.5

normalized value of

Testing data

600

_rea course
predicted course ——

200 300 400 500
timelsl

Figure 5.13: 3-steps ahead prediction performance (pitch-deg)

24

CHAPTER 5. PREDICTIONS OF FLIGHT VARIABLES USING NEURAL NETWORKS 25

Training data Testing data
4 T T T T 2 T T T el T
I course

3L prediéteeald Cgt:g B o 15 predicted course
g T
° <
r 2 - i) 1
ey =
O (=%
s 1 s
..g ! g 05
o 0 i =
3 R
Z-1 b g
g = -05
T2 4 £
£ 2
2-3 b

-1
_a i
-5 L 1 I 1 L -2 500
0 200 400 600 800 1000 1200
time[sl time[s]

Figure 5.14: 5-steps ahead prediction performance (pitch-deg)

Chapter 6

Conclusions and Future Work

The goal of this work was twofold. First we wanted to explore and "get a feel” of the data from a
flight simulator. Second, we wanted to test how artificial neural networks (ANNs) would perform in
providing the necessary context information for future intelligent pilot- vehicle interfaces. The main
advantage of ANNs over expert systems is the fact that they require little or no domain knowledge.
A drawback is that errors can be made by ANNs, making the result not always reliable. Since a pilot
always has to be able to rely on the given information and the accuracy of the system, we recommend
not to use neural networks as the main information source for an intelligent pilot-vehicle interface
system. We feel that an expert system would be much better and more predictable in this case.
However, neural networks can be used as an additional or extra information source for pilot action
estimation in case of uncertainty. Also, for predicting future values of variables ANNs can be used.
The latter does require a careful setting of the size of the time-window that is used to obtain the
prediction.

This report stands at the beginning of the Adaptive Cockpit Environment project. Its purpose is
just to sketch which approaches are possible to use and how successful neural networks might be. A
lot of work needs to be done in the future. One of the first activities, (which we have already started)
should be to acquire the necessary background domain knowledge for creating an expert system. It
should also be investigated what further role nueral networks can play in combination with an expert
system.

26

Bibliography

Endsley, M.R. (1999a) ”Situation awareness in aviation systems”, Handbook of Aviation Human
Factors, Garland, D.J., Wise J.A., Hopkin, V.D. editors, Lawrence Erlbaum Associates, Mahwah,
NJ USA.

Endsley, M.R. (1999b) ”Situation awareness and human error: designing to suppport human

performance”, Proceedings of the High Consequence Systems Surety Conference, Alburquerque,
NM USA.

NLR (2000) ” Adaptive Cockpit Environment”, memorandum VE-2000-002, Version 1.1, Nation-
aal Lucht-en Ruimtevaartlaboratorium, The Netherlands.

FlightGear Simulator, http://www.flightgear.org
Stuttgart Neural Network Simulator, http://www-ra.informatik.uni-tuebingen.de/SNNS/

Mulgund, S. S. and Zacharias, G. L. (1996) ”A Situation-Driven Adaptive Pilot/Vehicle Inter-
face”, www.cra.com/publications/papers/hics96.pdf

Elman Recurrent Neural Network, http://divcom.otago.ac.nz/ infosci/ kel/ software/ ricbis/ el-
man,/ elman_main.html

Intro to Time Series, http:// oll. temple. edu / economics / notes / timeseries / Timeseri.htm
Autocorrelation, http:// www.itl.nist.gov / div898 / handboook / eda / section3 / eda35c.htm
Autocorrelation Analysis, http:// www.csu.edu.au / ci / vol02 / cmxhk / nodel0.html

SPSS/PC+ Trends manual, ISBN 0-918469-44-9

27

