

Summary

	Design and implementation of an interaction logging tool

Source documentation of the LUI program

	(Draft version!)

	Ehlert, Patrick

Technical Report DKS??
Version 0.1, July 2003

Mediamatics / Data and Knowledge Systems group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, The Netherlands
	[image: image1.png]%
TU Delft

Ehlert, Patrick A.M. (P.A.M.Ehlert@its.tudelft.nl)

“Design and implementation of an interaction logging tool: Source documentation of the LUI program”

Technical Report DKS??

Version 0.1, July 2003

Mediamatics / Data and Knowledge Systems group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology, The Netherlands

http://www.kbs.twi.tudelft.nl

	Keywords:
	human-machine interaction, usability, user modeling, workload assessment

Preface

Here comes the preface
Summary

Here comes the summary
Table of Contents

IPreface

IIISummary

7Chapter 1: Introduction

71.1 Problem setting

71.2 Project description

8Chapter 2: Design

9Chapter 3: The Hooks.dll

93.1 Installing hooks

103.2 Information exchange between loaded dll’s and application

103.2.1 Setting up global variables

103.2.2 Sending data from the dll to the log application

113.3 Capturing user events

123.3.1 Keyboard messages

123.3.2 Mouse messages

133.3.3 Joystick messages

133.3.4 Other messages

143.4 Tracking the current window or object

143.5 Other design issues

16Chapter 4: The application

164.1 Main unit

164.2 HookIO unit

164.2.1 Setting up the DLL

164.2.2 Processing messages

164.3 Interpretation data

164.4 Other design issues

18Chapter 5: Processing messages

185.1 ProcessWnds Unit

185.2 ProcessKeyboard Unit

185.2.1 Pre-processing

185.2.2 Statistics

185.3 ProcessMouse Unit

185.3.1 Pre-processing

185.3.2 Statistics

185.4 ProcessJoystick Unit

185.4.1 Pre-processing

185.4.2 Statistics

22Bibliography

22WWW Resources

24Appendix A:
Title of first appendix

Chapter 1: Introduction

Enter summary and/or contents of this chapter.

1.1 Problem setting

Text
1.2 Project description

Consists of application and dll, both written in Delphi 5 and 7.

We would like to be able to know what a user is doing.

Application can be used for

· Usability studies (statistics, stress level)

· User modeling (stress level)

· Intelligent user interfaces (ICE project)
1.3 ICE project

Design

[image: image2.wmf]Windows

Program

LUI

interaction

Client program

Log File

TCP/IP

data

logging

Figure 1: The LUI program functions as a server for other programs and stores data in a log file

[image: image3.wmf]Capture

interactions

Identify

event

Windows

events

Useful

event

Update

user session

statistics

event

event

session

data

Save to logfile

Forward to other

programs

or

Figure 2: Processing in the LUI program

Chapter 2: The Hooks.dll

In this chapter we will describe the implemented hooks.dll, which is a dll that takes care of capturing user interactions. In section 3.1 we will start by explaining what a hook is, what types of hooks are available and how to use them. In section 3.2 we will discuss our methods for exchanging information between the hooks.dll and the LUI application. Next, in section 3.3 we explain what user events we capture and sent to the LUI application. Section 3.4 shows how we keep track of which window is active and receives a message. We close this chapter with a discussion of some implementation issues in section 3.5.

2.1 Installing hooks

Windows programs are notified of events through the use of messages sent by the operating system. A hook is a function that you can create as part of a dll or application that allows you to monitor Windows events by capturing the Windows message. The hook function is called automatically every time a certain Windows event occurs, usually just before the message is processed by the normal recipient of the event. Microsoft has designed hooks primarily to help programmers debug their programs. A drawback of using hooks is that they can have a significant impact on system performance and are difficult to debug. However, hooks allow us to capture system events, such as keyboard, mouse and joystick messages, in a relatively easy manner that would have been very difficult to obtain otherwise.

There are two types of hook; a local hook that monitors a specific program (or thread), and a global hook that monitors events for all running programs. A global hook requires all programs/threads to load the hook function, therefore a global hook function must reside in a dll. The dll will be loaded by each program or thread and uses that programs memory space. A list of hooks provided by the Windows operating system is shown in Table 1. For more information we refer to the Windows API Manual.

Table 1: Windows hooks

	Hook name
	Captures

	WH_CALLWNDPROC
	All messages sent by the SendMessage function (before processing)

	WH_CALLWNDPROCRET
	All messages sent by the SendMessage function (after processing)

	WH_CBT

 (Computer-based training)
	Certain window events (create, activate, resize, minimize, destroy etc.), keyboard and mouse

	WH_DEBUG
	A call to another hook function

	WH_FOREGROUNDIDLE
	The application's foreground thread when it is about to become idle

	WH_GETMESSAGE
	Messages that are about to be returned by the GetMessage or PeekMessage function (keyboard and mouse among others)

	WH_JOURNALRECORD
	Input events (keyboard and mouse) that can be stored and played back later (global hook only)

	WH_JOURNALPLAYBACK
	inserts messages into the system message queue so you can playback mouse and keyboard events recorded by a WH_JOURNALRECORD hook (global hook only)

	WH_KEYBOARD
	Keyboard messages (WM_KEYDOWN en WM_KEYUP) that are about to be returned by the GetMessage or PeekMessage function

	WH_KEYBOARD_LL
	Keyboard messages that are about to be posted in a thread input queue

	WH_MOUSE
	Mouse messages that are about to be returned by the GetMessage or PeekMessage function

	WH_MOUSE_LL
	Mouse messages that are about to be posted in a thread input queue

	WH_MSGFILTER
	Messages about to be processed by a menu, scroll bar, message box, or dialog box and activating a different window using the ALT+TAB or ALT+ESC key combination (hook application only)

	WH_SYSMSGFILTER
	Messages about to be processed by a menu, scroll bar, message box, or dialog box and activating a different window using the ALT+TAB or ALT+ESC key combination (global hook only)

	WH_SHELL
	Activation of the shell application and creating/ destroying a window

Our implemented Hooks.dll can install all of the above-mentioned hooks. However, we only specified a hook callback function for three global hooks; the WH_GETMESSAGE, WH_KEYBOARD, and WH_MOUSE hooks [??]. All other hooks will pass the captured messages to the general UnknownHookCallBack function. Since each running application will load our hooks.dll we tried to keep the size of our hooks.dll small. To keep the influence on system performance as small as possible we also limited our GetMessageHookCallBack function to a specific set of messages, because this particular hook captures many Windows messages.

Before we can actually set a hook with our hooks.dll we need to let the dll know where it should sent the captured messages. This is done using the SetLogAppHandle function. Then we can install a hook using the SetGlobalHook function. SetGlobalHook will set the appropriate hook callback function as specified by the HookType parameter. To remove the current hook, simply call the RemoveGlobalHook function. Note that errors in hook functions can trigger the Windows operating system to remove a hook automatically.

2.2 Information exchange between loaded dlls and application

Sending information from our log application to the hooks.dll is simply a matter of calling the functions that are exported by the hooks.dll. As mentioned in the previous section, we can use these functions to inform the dll of the handle of our log application and to set or remove a global hook. However, once a global hook is installed, other process will also load a copy of the hooks.dll in their memory space and we cannot access those dlls from our log application.

2.2.1 Setting up global variables

Since each loaded dll uses the memory space of the application that loaded it, each dll will use its own set of variables. To be able to use global variables that can be read and written by all dlls we define a record called TGlobalData that contains all global variables and store the record in a memory-mapped file (see also the code below).

TGlobalData = record

 HookHndl
: hHook;
// handle to installed hook

 LogApp
: THandle;
// handle to log application to sent copy of captured message

 ActiveObj
: hWnd;
// handle to object/window that will receive the captured message

end;

hMapObject := CreateFileMapping(

 $FFFFFFFF,

// use paging file

 nil,

// no security attributes

 PAGE_READWRITE,

// read/write access

 0,

// high 32 bits of size

 SizeOf(TGlobalData),

// low 32 bits of size

 'HOOKDATA');

// name of object

Each process that loads the dll will start by trying to create a memory-mapped file in the DllEntryPoint procedure. Note that only the first process that loads the hooks.dll will succeed in creating the memory-mapped file. All other processes will fail since there will already be a file with the same name in the memory. The process that loads the dll first will always be our logging program because this application first loads the dll before installing a hook. All dlls can now fill or change the TGlobalData record and each loaded version of the dll will have access to the same information.

2.2.2 Sending data from the dll to the log application

The GlobalData record stored in the memory-mapped file contains a handle to the main window of our application. This handle is set before starting a hook by the SetLogAppHandle function. Each loaded dll can use this handle to sent a copy of a captured message to our log application. For this we choose to use user-defined Windows messages. We have defined the following messages:

Table 2: Application defined messages

	Number
	Message name
	Description

	33000
	UWM_WINDOWCHNG
	contains handle of new active window

	33001
	UWM_KEYBOARD
	contains information about pressed keys

	33002
	UWM_MOUSE
	contains information about mouse usage

	33003
	UWM_JOYSTICK
	contains information about joystick usage

	33004
	UWM_UNKNOWN
	used for debugging purposes

The first message indicates that the active window that will receive the window message has changed. The next three messages are used when an event is captured from either the keyboard, mouse of joystick. The last message is only used for testing and debugging purposes.

When a dll has data to sent to the log application we use the WinAPI PostMessage function to sent the data. Note that PostMessage limits the data exchange to two long integers (wParam and lParam). We call PostMessage in our procedure called PostMesgToApp that checks if the message has been sent ok and tries to resend it once if this has failed.

procedure PostMesgToApp(Msg: UInt; wParam, lParam: LongInt);

begin

 if not PostMessage(Global^.LogApp, Msg, wParam, lParam) then begin

 if not PostMessage(Global^.LogApp, Msg, wParam, lParam) then begin

 Global^.LogApp := 0;

 RemoveGlobalHook;

 end;

 end;

end;

Alternatively, we could have used another memory-mapped file to store data that can be read by our log application. This would also allow us to send back more (types of) data to our log application. However, since we do not know how much data must be stored and since memory-mapped files have a fixed size, we have to create a rather large memory-mapped file in order to avoid possible data loss. We feel that this solution would be less elegant than posting Windows messages.

2.3 Capturing user events

To capture user events we decided to use the WH_GETMESSAGE hook. This hook allows us to capture certain Windows messages just before they are processed by an application. Unfortunately, since only ‘normal’ Windows applications receive and process window messages the GetMessage hook does not always capture a message. For example, DOS boxes running in Windows do not get Windows messages so we cannot detect keystrokes or mouse clicks in DOS programs. The GetMessageHookCallBack function that receives and processes messages before they are processed by the Windows application receives three parameters; Code, wParam and lParam (see also WinAPI).

function GetMessageHookCallBack(Code: Integer; wParam: WPARAM; lParam: LPARAM): LRESULT;

The Code variable contains (out-dated?) Windows code that indicates whether the hook procedure must process the message. The wParam variable specifies whether the message has been removed from the queue (i.e. will be processed by the receiving application). The lParam variable contains a pointer to a message record that contains details about the captured message and is most important. The message record always has the following form:

Msg = record

 hwnd
: hWND;
// Identifies the window whose window procedure receives the message.

 message: UINT;
// Specifies the Windows message number.

 wParam: WPARAM;
// Additional information about the message (depending on message variable)

 lParam
: LPARAM
// Additional information about the message (depending on message variable)

 time
: DWORD;
// Specifies the time at which the message was posted.

 pt
: Point;
// Specifies cursor position (screen coordinates) when the message was posted

end;

Be careful not to confuse the wParam and lParam in the message record with the wParam and lParam variables in the GetMessageHookCallBack function. Unfortunately we cannot sent all of the data contained in the message record to our log application, since the PostMessage function only allows us to sent two long integers (which are again called wParam and lParam). Therefore we have to make a selection about what data to send, depending on the type of message.

To keep our dll small and fast, we ignore most of the captured Windows messages and only process a subset of messages, which are described below.

2.3.1 Keyboard messages

The following Windows keyboard messages are captured and processed by our WH_GETMESSAGE hook callback function:

Table 3: Captured keyboard messages

	Number
	Message name
	Description

	256
	WM_KEYDOWN
	key pressed and no ALT key is used

	257
	WM_KEYUP
	key released and no ALT key is used

	260
	WM_SYSKEYDOWN
	key pressed in combination with ALT key

	261
	WM_SYSKEYUP
	key released in combination with ALT key

For each captured keyboard message we sent back the wParam and lParam from the message record.

 PostMesgToApp(UWM_KEYBOARD, wParam, lParam);

The wParam contains the virtual key-code of the key that generated the keystroke message and the

lParam contains additional key-stroke information.

2.3.2 Mouse messages

Windows makes a different message when the mouse cursor is inside or outside a client window. The following Windows mouse messages are captured and processed by our WH_GETMESSAGE hook when the cursor is outside a client window:

Table 4: Captured mouse messages outside client window

	Number
	Message name
	Description

	160
	WM_NCMOUSEMOVE
	mouse cursor moves

	161
	WM_NCLBUTTONDOWN
	left mouse button is pressed

	162
	WM_NCLBUTTONUP
	left mouse button is released

	163
	WM_NCLBUTTONDBLCLK
	left mouse button is doubleclicked

	164
	WM_NCRBUTTONDOWN
	right mouse button is pressed

	165
	WM_NCRBUTTONUP
	right mouse button is released

	166
	WM_NCRBUTTONDBLCLK
	right mouse button is doubleclicked

	167
	WM_NCMBUTTONDOWN
	middle mouse button is pressed

	168
	WM_NCMBUTTONUP
	middle mouse button is released

	169
	WM_NCMBUTTONDBLCLK
	middle mouse button is doubleclicked

The following Windows mouse messages are captured by the WH_GETMESSAGE hook when the cursor is inside a client window:

Table 5: Captured mouse messages inside client window

	Number
	Message name
	Description

	512
	WM_MOUSEMOVE
	mouse cursor moves

	513
	WM_LBUTTONDOWN
	left mouse button is pressed

	514
	WM_LBUTTONUP
	left mouse button is released

	515
	WM_LBUTTONDBLCLK
	left mouse button is doubleclicked

	516
	WM_RBUTTONDOWN
	right mouse button is pressed

	517
	WM_RBUTTONUP
	right mouse button is released

	518
	WM_RBUTTONDBLCLK
	right mouse button is doubleclicked

	519
	WM_MBUTTONDOWN
	middle mouse button is pressed

	520
	WM_MBUTTONUP
	middle mouse button is released

	521
	WM_MBUTTONDBLCLK
	middle mouse button is doubleclicked

	522
	WM_MOUSEWHEEL
	mouse scroll wheel is moved

For each captured mouse message we first store the x and y coordinates of the mouse pointer in one longinteger (32 bits integer).

Coordinates := ((PMsg(lParam).pt.y) * $10000) + (PMsg(lParam).pt.x);

This way the first 16 bits will contain the y-coordinate and the last 16 bits will contain the x-coordinate of the pointer. The coordinates will be sent as lParam and the type of mouse message (Windows message number) is sent as the wParam.

PostMesgToApp(UWM_MOUSE, wParam, Coordinates);

2.3.3 Joystick messages

Normally, the WH_GETMESSAGE hook does not capture joystick messages because these messages are not sent to and processed by any running application. To let Windows send joystick messages to an application that application can use the WinAPI joySetCapture function. In our LUI application we start joySetCapture for all available joysticks, just after we have installed the global GetMessage hook. This way, the hook will receive the following messages:

Table 6: Captured joystick messages

	Number
	Message name
	Description

	928
	MM_JOY1MOVE
	joystick1 is moved (change of axis 1 and 2)

	929
	MM_JOY2MOVE
	joystick2 is moved (change of axis 1 and 2)

	930
	MM_JOY1ZMOVE

	joystick1 z-as (axis 3) is changed

	931
	MM_JOY2ZMOVE
	joystick2 z-as (axis 3) is changed

	949
	MM_JOY1BUTTONDOWN
	button on joystick 1 is pressed

	950
	MM_JOY2BUTTONDOWN
	button on joystick 2 is pressed

	951
	MM_JOY1BUTTONUP
	button on joystick 1 is released

	952
	MM_JOY2BUTTONUP
	button on joystick 2 is released

Just like captured mouse messages, we use wParam to send the type of joystick message that was generated and lParam to send the x and y coordinates (x and y-axis) of the joystick. Only now, the coordinates are already contained in the lParam of the received message record, so we do not have join them into one long integer first.

PostMesgToApp(UWM_JOYSTICK, PMsg(lParam)^.Message, PMsg(lParam)^.lParam);

A drawback of the joySetCapture function is that it only looks at a maximum of 2 joysticks, 3 joystick axes and 6 buttons for each stick.

2.3.4 Other messages

It is possible to capture other messages using a WH_GETMESSAGE hook. During experiments we found that in addition to the messages mentioned above, we are also able to capture the following messages:

Table 7: Other possible messages

	Number
	Message name
	Description

	0
	WM_NULL
	test message, does not do anything

	5
	WM_SIZE
	sent to window if its size is changed

	15
	WM_PAINT
	paint a part of an application’s window

	16
	WM_CLOSE
	signals a window or an application that it should terminate

	18
	WM_QUIT

	request to terminate an application

	32
	WM_SETCURSOR
	sent to non-mouse processing window if mouse moves

	48
	WM_SETFONT

	specify the font that a control is to use when drawing text

	134
	WM_NCACTIVATE
	sent to window when its nonclient area changes to active/inactivestate

	197
	EM_LIMITTEXT
	limits the amount of text the user can enter into an edit control

	258
	WM_CHAR

	posted to keyboard window when a WM_KEYDOWN msg is translated

	675
	WM_MOUSELEAVE

	cursor leaves the client area of the window

	955
	MM_WOM_OPEN
	waveform-audio output device is opened

	956
	MM_WOM_CLOSE

	waveform-audio output device is closed

	957
	MM_WOM_DONE
	buffer is being returned (has been played) to the application

	972
	MM_MIM_MOREDATA
	?

However, since (at the moment) our logging program does not use these messages, they are not forwarded by the hook. Also, we are not sure whether these messages appear consistently (are processed by all normal Windows applications) or were only captured because they were received by some particular application that was running at the time.

2.4 Tracking the current window or object

We also want to be able to know to which application will receive the message that we have captured. To this end, we can use the hwnd variable in the message record received through hook callback function. The hwnd variable contains a handle to the window or object that will receive the message. We use the CheckNewActiveObject procedure to check if this object is different than the last received message. If so, we send a message to our log application stating the change. We use the global variable ActiveObj to compare the current and previous handle.

procedure CheckNewActiveObject(hWindow: hWnd);

begin

 if Global^.ActiveObj <> hWindow then begin

 PostMesgToApp(UWM_WINDOWCHNG, hWindow, Global^.ActiveObj);

 Global^.ActiveObj := hWindow;

end;

2.5 Other implementation issues

Since hooks are very difficult to debug, we added a lot of debugging routines into our hooks.dll. The debugging routines are activated by setting the {$DEBUG} compiler directive and/or the Delphi project’s debugging/assertions compiler setting. All the {$DEBUG} routines write output to a certain file, so we can trace back what commands are performed later. However, since multiple dlls are active while running, writing to a file can cause system errors when too many applications are running and many dlls try to write at once.

It has been known that hooks can cause clashes with certain programs [WWW Gajits]. However, while implementing and testing our hooks.dll we did not find any such program. Our hooks.dll seems to be working with all of our installed Windows programs (e.g. Office, Explorer, Delphi 5). However, one program has been found to influence the performance of our LUI program. This program called Workpace is an RSI prevention program that monitors the user’s computer usage (probably also by using hooks), and ‘freezes’ the computer at regular interval to let the user rest. During a Workpace pauze, the LUI will not receive and record any keystrokes entered by the user. However, all mouse and joystick actions are still being recorded.

The application

2.6 Main unit

The main unit of our LUI application contains the main interface window (MainForm) of our program. When the LUI application is started, MainForm’s FormCreate procedure begins by initializing other objects and units, such as the HookIO unit and the SessionManager object. In addition, it checks the current Windows version.

[uitbreiden?]
2.7 Sessionmanager

2.8 HookIO unit

All communication with the dll is done in the HookIO unit. When the HookIO unit is initializes by MainForm’s FormCreate procedure (a call to the HookIO.Initialize procedure), we change the default WindowProc procedure that normally handles incoming Windows messages. Instead, we set the ReceiverWindowProc to deal with this.

Besides setting a new WindowProc, we also register a message that indicates that our program has started, but more on this in section 4.3.2.

2.8.1 Setting up the DLL

Set WindowProc

Start hook

Receive user events from DLL
2.8.2 Processing messages

deal with startapp msg.

more detail in next chapter

timestamping of msg. Not same as when event occurs.

The special debug compiler directive can be set in the HookIO unit to test which messages are being processed. With the debug directive set these messages are stored in a file.
2.9 Interpretation data

calculating statistics

give meaning depending on window

more detail in next chapter
2.10 Other design issues

Only want single instance of app active -> mutex solution
Chapter 3: Processing messages

3.1 ProcessWnds Unit

3.2 ProcessKeyboard Unit

3.2.1 Pre-processing

3.2.2 Statistics

3.3 ProcessMouse Unit

3.3.1 Pre-processing

Note that if a user double clicks, windows will first generate a WM_xBUTTONDOWN message and then, if the second click is within the interval specified in the Windows mouse properties a WM_xBUTTONDBLCLK message is sent.

3.3.2 Statistics

3.4 ProcessJoystick Unit

3.4.1 Pre-processing

3.4.2 Statistics

Chapter 4: The TCP/IP Server

text

Bibliography

Authorlastname, A.U. and SecondAuthord, S. (2002) “Title of some article”, in Title of the Journal or conference proceedings, pages 23-24, Month and year of conference, Publisher, Place, (State and) country.

WWW Resources

WWW Gajits http://www.gajits.com/delphihooks.asp (December 12, 2002)

More space for Bibliography

Appendix A: Title of first appendix

[image: image4.wmf]MainForm

btnStartSession

btnStopSession

MemoEvents

ShowEventOnScreen

UpdateStressMeter

HookInstaller

HookEnabled

HookType

Initialize

Reset

Shutdown

StartCapture

StopCapture

ProgramOptions

LogKeyboard

LogMouse

LogJoystick

LogSystemEvents

LogFileEnabled

LogFileName

TCPPortNr

ReadIniFile

SaveIniFile

ApplyOptions

UserProfile

UserName

CurrentSession

PreviousSessions

SaveCurrentSession

LoadPreviousSessions

show result

SessionManager

Status

ProgramStart

StartSession

StopSession

start/stop system hooks

FormSessionData

ShowSessionData

ScreenUpdate

read

start/stop sessions

show

show

show and

change preferences

read options

add new

session

stores

FormOptions

FormSysInfo

MsgHandler

update

statistics

TCP/IP Server

Start

Stop

read options

get statistics

get events

[image: image5.wmf]UserProfile

UserName

CurrentSession

CreateNewSession

SaveSessions

ReadSessions

SessionRecord

StartTime

EndTime

NrKeys

NrEsc

NrCtrl

NrAlt

NrShift

NrSpace

NrEnter

NrBkSpc

NrDel

NrArrow

NrPgUpDwn

UsedTime

StatsKeyboard

SpeedAvg

SpeedHgh

SpeedCur

n

1

contains

 earlier

recorded sessions

NrRightClick

NrMiddleClick

NrLeftClick

NrRightDClk

NrMiddleDClk

NrLeftDClk

NrScrollWheel

UsedTime

TotDistance

SpeedAvg

SpeedHgh

SpeedCur

StatsMouse

NrBtnClick

StatsJoystick

UsedTime

TotDistance

SpeedAvg

SpeedHgh

SpeedCur

StatsXYAxis

UsedTime

TotDistance

SpeedAvg

SpeedHgh

SpeedCur

StatsZAxis

[image: image6.wmf]ProcessJoystick

CaptureEnabled

NrOfJoysticks

UserIsUsingStick

ResetStats

ProcessMsg

UpdateSpeeds

StartCaptureAllSticks

StopCaptureAllSticks

ProcessKeyboard

UserIsTyping

ResetStats

ProcessMsg

UpdateSpeeds

ProcessMouse

UserIsMousing

ResetStats

ProcessMsg

UpdateSpeeds

MsgHandler

HookEnabled

HookType

Initialize

Reset

Shutdown

StartCapture

StopCapture

ProcessSysCommand

ResetStats

ProcessMsg

send captured message

Hooks.DLL

SetReceiverHandle

SetGlobalHook

RemoveGlobalHook

Process raw message

Stress

StressLevel

AddKeyStress

AddMouseStress

AddTimeStress

send preprocessed message

Copyright © 2003, Patrick Ehlert, Delft University of Technology

3

_1116933250.vsd

_1116938411.vsd

_1116938427.vsd

_1116938318.vsd

_1116932895.vsd

