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Abstract

Optimality Theory (OT) has had a lot of attention from
the linguistics research community but also still largely
lacks cognitive grounding. We used the ACT-R
cognitive architecture to gain greater insight into the
cognitive grounding issues that OT needs to address,
most notably the GEN process and the learning of the
constraint ranking. A generic ACT-R 5.0 model was
developed guided by OT principles. The generic model
was instantiated in two specific models, one for
syllabification and one for past tense formation. Realistic
perception data was used to train the models, both were
successful in learning the correct constraint ranking for
their domain. This result partly bridges the gap between
Optimality Theory and ACT-R, providing OT with a
better cognitive grounding and ACT-R with better
linguistic capabilities.

Introduction

Overview of ACT-R
ACT-R (Anderson & Lebiere, 1998) is a cognitive
architecture. As such it provides a framework for
developing computational models of a wide variety of
cognitive tasks. These models are constrained by the
architecture in the way they retrieve, store and process
information. Declarative knowledge is stored in
memory as chunks that can contain only a limited
amount of information, either as atomic values or as
references to other chunks. Procedural knowledge is
represented by productions; IF-THEN rules that
compete with each other. Every production cycle
(50ms), one rule is selected to alter the current goal,
which is a chunk.

Overview of Optimality Theory
In the early 1990's, Optimality Theory was introduced
to the linguistics research community (Prince &
Smolensky, 1993). The central idea in OT is the
concept of Harmony; a measurement to determine how
well an utterance fits with the grammar of a language,
expressed in a set of constraints. Figure 1 shows the
entire process that OT proposes to take place when
producing an utterance.

The input is the lexical representation of a word, the
output is the final utterance as spoken by the speaker.
When an input is selected to be uttered, a function
called GEN will generate a set of potential utterances,
called the candidate set. The EVAL function will then
evaluate which of these candidates is the most optimal
one, given an ordered set of constraints (CON ). A
constraint specifies a certain condition, and a constraint
violation means that that condition is not satisfied in the
candidate. For example, the constraint called FaithV is
a faithfulness constraint. It specifies that each vowel in
the input should be present in the output as well. Every
omission or addition is a violation of the constraint

The EVAL function can best be described by
splitting it up in two steps: (1) first for each candidate
the highest-ranking constraints that is violated by that
candidate is determined. The result of this step is that
each candidate is now accompanied by a constraint
violation. (2) Next, these constraint violations are
compared to determine which candidate violates (if
any) the constraint that is ranked lowest, this candidate
is the most optimal candidate and therefore the output.

An important aspect of OT is that the constraint set is
assumed to be universal, i.e. the same for all languages.
Only the ranking of the constraints is different for each
language.

 

Figure 1: The Optimality Theory process.



Table 1: Example tableau showing Spanish syllabification.

Spanish: FaithV, Peak, *Complex >> FaithC
/absorb-to/ FaithV Peak *Complex FaithC

F ab.sor.to *
ab.sorb.to *!
ab.sor.be.to *!
ab.sor.b.to *!

Table 2: Example tableau showing English syllabification.

English: FaithV, FaithC, Peak >> *Complex
/soft-nes/ FaithV Peak FaithC *Complex

F soft.nes *
sof.nes *!
sof.ti.nes *!
sof.t.nes *!

Example. Table 1 and Table 2 (adopted from
Archangeli, 1997), provide an example of how OT
explains certain characteristics of the syllabification of
words. The vowel in a syllable is called the nucleus, the
consonants before it are called the onset and the
consonants after it are called the coda.

The constraints used in this example are FaithV,
FaithC, Peak and *Complex. FaithV and FaithC are
faithfulness constraints for vowels and consonants,
respectively. Peak is violated when a syllable does not
contain exactly one vowel and *Complex is violated
when the onset or coda is complex, i.e. when they
consist of more than one consonant each.

The first column contains the input, in the top row,
and (part of) the candidate set, the next columns each
correspond to one constraint. The ranking of the
constraint is reflected in the order of the columns. A
dotted line between two columns indicates that the
ranking of those two constraints is equal or not
important to the phenomenon currently being
explained. Constraint violations are marked with
asterisks (*). An exclamation mark (!) indicates a fatal
violation. The row that corresponds to the optimal
candidate is marked with a hand symbol.

Table 1 shows that in Spanish sometimes a consonant
disappears from the output, in this case in an adjective,
indicated by the "-to" suffix. The OT explanation for
this is that in Spanish the *Complex constraint is
ranked higher than the FaithC constraint. Table 2 shows
that in English consonants do not disappear, because
FaithC is ranked higher than *Complex.

Combining OT & ACT-R

Why combine?
The interest in combining the two theories is twofold.
First of all, it is expected that by applying insights into
cognition, as used in the ACT-R framework, the
cognitive basis for Optimality Theory can be enhanced.
Second, ACT-R will be a better cognitive architecture if
it can also explain linguistic phenomena.

Improving the cognitive basis of OT. OT has a
number of open issues regarding its cognitive basis.
Although OT is connected to connectionism, through its
roots in Harmony Theory, this connection does not
satisfactory explain how OT might be implemented in
the brain. Harmony Theory does support the EVAL
process, but both the GEN process and the
cognitive/neural basis of the candidate set are
underspecified. These two issues are of course deeply
connected, because GEN generates the candidate set.

The GEN process needs to generate a candidate set
that in some cases has to be very irregular. For example
the candidate set that contains the past tense of the
English irregular verb "go" needs to contain the word
"went". Furthermore, the candidate set is sometimes
required to be very large, but how the brain would
create and analyze such a vast set is left unexplained.

ACT-R needs to speak up. The ACT-R theory still
lacks a usable speech/linguistic module. In order to
explain certain phenomena, for example language
acquisition, detailed knowledge about the processes
involved in perception and production of speech is
required.



Design
The high level design of the ACT-R model of OT is as
follows: (a) The input is represented by strings of
characters, which are a scaled down version of the IPA
phonetic alphabet. (b) Constraints are represented by
production rules, competing with each other based on
their expected gain. This competition represents the
ranking of the constraint set. (c) The GEN function is
modeled by finding analogies between the current input
and previous inputs. The transformation needed to get
the output out of the analog input is then applied to the
current input. (d) The EVAL function is modeled by
comparing the candidate generated by GEN with the
most optimal form until that time in the process. (e) The
EVAL function iterates over the candidates generated
by GEN, either until no new candidates are formed or
until a certain fixed number of iterations have been
processed. (f) The model can operate in two modes:
perception or production. In perception mode the
perceived form is considered the optimal form and can
be used to learn the order of the constraints. In
production mode the form that the model considers best
is generated.

The candidate set is thus never represented entirely,
only the best candidate so far is stored. A competing
candidate is generated and compared with the current
best.

Learning
Learning in OT. Two aspects of OT involve learning,
the constraint ranking and the GEN function/lexicon.
Learning in the GEN function and/or the lexicon has
not received the same attention in the OT literature as
the learning of the constraint ranking has. Tesar and
Smolensky (2000) argue that learning the constraint
ranking is accomplished as follows: given a perceived
utterance, it is assumed that the input from which that
utterance was derived is known This input is used to
generate a candidate set, which is evaluated against the
current constraint ranking. If a candidate is more
optimal than the perceived utterance, this indicates that
the current constraint ranking is incorrect, given that the
perceived form is the most optimal one. In such a case,
the ranking is adjusted by demoting the constraints that
are violated by the perceived form but not by the
generated form until the candidate is not evaluated as
more optimal than the perceived utterance anymore.
Other approaches (Boersma 2000; Stemberger and
Bernhardt 2001) also allow for promoting constraints.

Learning in OT + ACT-R. There are several
possibilities for learning in a combined OT and ACT-R
framework. The focus in this research has been on
applying learning mechanism inherent in ACT-R to the
learning issues of OT. By identifying constraints with

productions, the ACT-R learning mechanisms for the
expected gain of a production make it possible to learn
the constraint ranking by its mechanisms for learning
production ranking. ACT-R also provides learning
mechanisms that might be used in learning involved in
the GEN process but these learning mechanisms are not
considered in the current design.

Detailed description of the model
The chunk type. Chunks form the declarative
knowledge in ACT-R. Only one type of declarative
knowledge is used throughout the model, it serves as
the goal, and old goals are stored in memory.  These
goal chunks contain the input, the optimal form, a
competing candidate, and some bookkeeping
information. All perceived and produced utterances are
stored as chunks, since they were goals once.

Constraint implementation. Every constraint is
associated with one production rule. The constraints are
implemented as external functions in Lisp code, called
by the production. The reason for this is that the
operations require rather more elaborate calculations
than could only be carried out by ACT-R in a single
production cycle.  We think of these as representing
special capabilities of a speech module.

Flow of control. The different states of the entire
process are illustrated in Figure 2. We will discuss each
of the three components and the iteration illustrated
there:

GEN. The GEN process generates analogies in two
steps. (1) In the first step a request is sent to ACT-R’s
retrieval process to retrieve a chunk with an input value
similar to the input value of the goal. In the next step of
the analogy process (2) the retrieval buffer is examined.
If it is empty the entire process is terminated because
there are no more similar candidates. If it contains a
memory chunk, this chunk is analyzed to determine the
transformation that alters its input slot to its output slot.
The transformation is then applied to the input of the
current goal and the result is stored in the candidate slot
of the goal.

EVAL. The candidate and current best options are
stored in the goal.  Different productions representing
different constraints propose either the candidate or the
optimal form as best form, according to the constraint
violations in both. ACT-R will select the production
with the highest expected gain to place the best form in
the best slot of the goal. The expected gain can be
learned by ACT-R from experience with that
production, described below. The production that fires
thus represents the highest-ranking constraint that is
violated by either the optimal or candidate form.



Figure 2: Flow of the ACT-R model of OT.

EVALED. Only when the state has reached EVALED,
the model behaves different depending on the mode of
operation; perception or production. This is an
important aspect of the model, because it is not
necessary to devise two versions of GEN, and the
learning of the constraint ordering that occurs in
perception mode is directly reflected in production
mode.

In perception mode the best slot is compared with the
optimal and candidate slot. If the candidate is the best,
this means that the ordering of the constraints is wrong,
i.e. the constraint that indicated that the competing
candidate form is more optimal than the perceived
optimal form should be ranked lower. The production
that fires on this situation is marked with the failure
attribute. If it fires this results into an increase of the
number of failures for all preceding productions, thus
including the production associated with the constraint
that is ranked too high. A higher number of failures
leads to a decrease of the expected gain value (PG-C) of
that production which makes it less likely that that
production will fire again in that context in the future. If
the optimal (perceived) form is selected as the best, the
success attribute is marked, leading to an increase of the
expected gain value. The end result of this learning
process will be a stable ranking of the constraints,
ideally reflecting the correct ranking.

When the goal is to produce an utterance, the optimal
slot simply is replaced with the value of the best slot.
The expected gain values are thus not adjusted in this
case.

Iterations. The above three components could generate
and evaluate the entire candidate set. Two issues
prevent such behavior: (1) It is unknown how large the
candidate set is, in fact in this model the generate
function may continue to generate indefinitely. (2)

After a certain amount of time, something will have to
be uttered. For these reasons, only a fixed, small,
number of iterations are allowed in the model.

Two applications: syllabification and past tense
Two linguistic phenomena have been modeled in detail,
syllabification and past tense formation, both only in
English. Syllabification is the process by which
sequences of phonemes are divided into syllables. The
formation of the past tense of verbs is a widely
researched phenomenon, especially regarding the
U-shaped learning that is involved. The six
syllabification constraints are slightly modified versions
from Archangeli (1997), their meaning is explained in
the example above. The five past tense constraints are
similar to those in Stemberger and Bernhardt (2001).

Data
Syllabification data. A data set comparable to what
children are exposed to is used to train the model. The
data is gathered from the CHILDES database according
to the following criteria: (a) Only utterances made by
the mother or father of the child are used. (b) The child
addressed is not older than 2 years and 6 months. (c)
The utterances are part of a free speech session, as
opposed to a laboratory dialogue. The data set is
assumed to give a reasonably fair representation of the
utterances a child is exposed to. The following data sets
met these criteria, sometimes partially to stay within the
age requirement, and were used to form the general data
set: Bernstein (1982), Demetras (1989a, 1989b),
Higginson (1985), Howe (1981) and Korman.

Of the resulting data set the thousand most frequent
words were transcribed in the rough phonetic
transcription used in the model, along with the syllabic
structure of the word. It is noteworthy that in this
sample 87.5% of the word forms uttered have one
syllable, 11.5% have two syllables and only 1% has
more than two syllables.  Given the high ranking of
Faithfulness and Peak in English, the *Complex,
NoCoda and Onset constraints are only of interest for
word forms with multiple syllables, which are not very
frequent. The data sample is presented to the model one
by one as perceived speech utterances, according to the
frequency distribution.

Past Tense data. The data used to train the past tense
model is the same as the data used in Taatgen and
Anderson (2002). This data set contains 478 verbs that
children or their parents use as reported by Markus et
al. (1992) with frequency information from Francis and
Kucera (1982). The first person present and past tense
of these verbs were transcribed in the rough phonetic
form used also in the syllabification model and



presented to the model as perceived utterances,
distributed according to their real world frequency.

Noteworthy is that the 13 most frequent verbs,
accounting for 65% of the total based on frequency, are
irregular verbs1, with "am"/"was" alone accounting for
35%. This will lead to problems in the learning of the
constraint ranking because the constraint set cannot
qualify these irregular forms as the most optimal ones
in all cases.

Contrary to syllabification, there is data available on
how children perform on the forming of past tenses.
This data applies to the errors children make in their use
of a regularized past tense when the actual past tense is
irregular. Such data shows that children exhibit U-
shaped learning, separable in three stages. In the first
stage irregular and regular forms are used correctly. In
the second stage the irregular forms are regularized; i.e.
forms like "*kEped" or "*havd" might be uttered. In the
third stage the correct forms are used again for both
regular and irregular past tenses.

Results
Syllabification results. The graph in Figure 3 shows
the expected gain values of the productions associated
with the constraints after every time the model has
perceived and utterance. It clearly shows that the
constraint ranking converges to the correct ranking
rather quickly. This graph depicts a typical run of the
model with 1000 exposures to syllabification data.
After such a run the production performance of the
model is about 95%.

The most promising result is that the correct
constraint ranking is in fact learned.

Past Tense results. As with the syllabification model,
the correct constraint ranking is learned, shown in
Figure 4. The production performance of the model is
not very good, after a typical run of 1000 perceptions
the production performance is about 2/3 correct.

U-shaped learning is not modeled, because the
current model uses a constraint set that cannot deal with
exceptions. For example if both "amd" and "was" are
generated as candidates for "am", "amd" is the optimal
form according to this constraint set and ordering. The
only way to resolve this issue is by bypassing the
constraint evaluation, which might be achieved by
proceduralization, as discussed in the final discussion
and conclusion section.

                                                            
1 On closer inspection, irregularity is not such a well-defined
concept. Burzio (2002) argues that from a phonetic viewpoint
the supposedly irregular past tense of for example "keep",
being "kept", can be regarded as more phonetically regular
than the regular form "*keeped".
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Figure 3: The ranking of the constraints in the
syllabification example, as identified by the expected

gain values of the ACT-R productions.

Figure 4: The ranking of the constraints in the past
tense example.

Discussion and conclusions
Both the models are able to learn the correct constraint
ranking, which is the most important and promising
result.  The models however do not yet show realistic
human/child like speech behavior. This limits the
ability to validate the results on the empirical level. The
models are best thought of as models of early language
development. Adult performance might be achieved
through proceduralization; an ACT-R mechanism that
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gradually moves knowledge from declarative memory
(chunks) to procedural memory (productions).
Procedural izat ion can even bypass  the
generation/evaluation process entirely by introducing
productions specific for uttering a certain morpheme,
word or even parts of sentences. This will allow for
exceptional cases to be handled correctly as well. Note
that learning of the constraint ranking occurs only from
perceived utterances and so it can start well before a
child starts producing utterances herself.

We also do not treat in detail the nature of the
individual constraints. The current model treats each
constraint as external to central cognition, linked in
through its associated productions. OT only claims that
the constraints are universal, not what their nature is.
More research is needed to determine whether it is
possible to learn the constraints themselves also,
besides just their ranking. From an ACT-R viewpoint
this seems possible. Another possibility is that the
constraints are the cognitive counterpart of physical
conditions, for example the muscles in the vocal tract.
This would account for the universal manifestation of
these constraints. However that would have to be
proven for every constraint separately. It could be
acceptable from an ACT-R viewpoint, because ACT-R
has to take into account the various limitations imposed
on cognition by being embodied.

On a more theoretical level, the approach as
described in this paper forms a bridge between two
previously unrelated theories. To do this, Optimality
Theory had to be adjusted to fit into the ACT-R
architecture: the generate function, the candidate set
and the constraint ranking learning mechanism were
altered, all based on the limitations imposed by ACT-R.
Negatively put, this can mean that one of the theories
was wrong, since it was incompatible with a theory that
dealt with the same phenomena. Of course a more
constructive approach is to say that both theories need
to converge to a more encompassing unified theory of
cognition.
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